
CS/ECE 374 A: Algorithms & Models of Computation Version: 1.02 Spring 2022

This is a �core dump� of potential questions for Midterm 1. This should give you a good idea of
the types of questions that we will ask on the exam�in particular, there will be a series of True/False
questions�but the actual exam questions may or may not appear in this handout. This list intentionally
includes a few questions that are too long or di�cult for exam conditions; most of these are indicated
with a ∗star.

Questions from past exams are labeled with the semester they were used, for example, 〈〈S14〉〉 or
〈〈F14〉〉. (Questions from old exams might reappear on this semester's exams, but they might not.)
Questions from this semester's homework are labeled 〈〈HW〉〉. Questions from this semester's labs are
labeled 〈〈Lab〉〉.

1. Induction on Strings

Give complete, formal inductive proofs for the following claims. Your proofs must reply on the formal
recursive de�nitions of the relevant string functions, not on intuition. Recall that the concatenation �

and length
∣∣ · ∣∣ functions are formally de�ned as follows:

w � y :=

{
y if w = ε

a · (x � y) if w = ax for some a ∈ Σ and x ∈ Σ∗∣∣w∣∣ :=

{
0 if w = ε

1 +
∣∣x∣∣ if w = ax for some a ∈ Σ and x ∈ Σ∗

1. The reversal wR of a string w is de�ned recursively as follows:

wR :=

{
ε if w = ε

xR � a if w = ax for some a ∈ Σ and x ∈ Σ∗

1.A. Prove that (w � x)R = xR � wR for all strings w and x. 〈〈lab, F14〉〉
1.B. Prove that (wR)R = w for every string w. 〈〈lab〉〉
1.C. Prove that

∣∣w∣∣ =
∣∣wR

∣∣ for every string w. 〈〈lab〉〉
1.D. Prove that (wn)R = (wR)n for every string w and every integer n ≥ 0.

2. For any string w and any non-negative integer n, let wn denote the string obtained by concate-
nating n copies of w; more formally, de�ne

wn :=

{
ε if n = 0

w � wn−1 otherwise

For example, (BLAH)5 = BLAHBLAHBLAHBLAHBLAH and ε374 = ε.

2.A. Prove that wm
� wn = wm+n for every string w and all non-negative integers n and m.
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2.B. Prove that (wm)n = wmn for every string w and all non-negative integers n and m.

2.C. Prove that
∣∣wn
∣∣ = n

∣∣w∣∣ for every string w and every integer n ≥ 0.

3. Consider the following pair of mutually recursive functions:

evens(w) :=

{
ε if w = ε

odds(x) if w = ax
odds(w) :=

{
ε if w = ε

a · evens(x) if w = ax

For example, evens(0001101) = 010 and odds(0001101) = 0011.

3.A. Prove the following identity for all strings w and x:

evens(w � x) =

{
evens(w) � evens(x) if

∣∣w∣∣ is even,
evens(w) � odds(x) if

∣∣w∣∣ is odd.
3.B. Prove the following identity for all strings w:

evens(wR) =

{
(evens(w))R if

∣∣w∣∣ is odd,
(odds(w))R if

∣∣w∣∣ is even.
3.C. Prove that

∣∣w∣∣ =
∣∣evens(w)

∣∣+
∣∣odds(w)

∣∣ for every string w.

4. Consider the following recursive function:

scramble(w) :=

{
w if

∣∣w∣∣ ≤ 1

ba � scramble(x) if w = abx for some a, b ∈ Σ and x ∈ Σ∗

For example, scramble(00 01 10 1) = 00 10 01 1.

4.A. Prove that
∣∣scramble(w)

∣∣ =
∣∣w∣∣ for every string w.

4.B. Prove that scramble(scramble(w)) = w for every string w.

2. Regular expressions

For each of the following languages over the alphabet {0, 1}, give an equivalent regular expression.

5. Every string of length at most 3.
(
Hint: Don't try to be clever.

)
6. 〈〈lab〉〉 Every string except 010.

(
Hint: Don't try to be clever.

)
7. All strings in which every run of consecutive 0s has even length and every run of consecutive 1s

has odd length.〈〈F14〉〉

8. 〈〈hw〉〉 All strings not containing the substring 010.

9. All strings containing the substring 10 or the substring 01.

10. All strings containing either the substring 10 or the substring 01, but not both.
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11. All strings containing at least two 1s and at least one 0.

12. All strings containing either at least two 1s or at least one 0.

13. 〈〈lab〉〉 All strings such that in every pre�x, the number of 0s and the number of 1s di�er by at
most 1.

14. The set of all strings in {0, 1}∗ whose length is divisible by 3.

15. 〈〈S14〉〉 The set of all strings in 0∗1∗ whose length is divisible by 3.

16. The set of all strings in {0, 1}∗ in which the number of 1s is divisible by 3.

3. Direct DFA construction

Draw or formally describe a DFA that recognizes each of the following languages. If you draw the DFA
you may omit transitions to a reject/junk state.

17. Every string of length at most 3.

18. 〈〈lab〉〉 Every string except 010.

19. The language {LONG,LUG,LEGO,LEG,LUG,LOG,LINGO} .

20. The language MOO∗ +MEOO∗W

21. All strings in which every run of consecutive 0s has even length and every run of consecutive 1s
has odd length.〈〈F14〉〉

22. 〈〈lab〉〉 All strings not containing the substring 010.

23. All strings containing the substring 10 or the substring 01.

24. All strings containing either the substring 10 or the substring 01, but not both.

25. The set of all strings in {0, 1}∗ whose length is divisible by 3.

26. 〈〈S14〉〉 The set of all strings in 0∗1∗ whose length is divisible by 3.

27. The set of all strings in {0, 1}∗ in which the number of 1s is divisible by 3.

28. All strings w such that the binary value of wR is divisible by 5.

29. 〈〈lab〉〉 All strings such that in every pre�x, the number of 0s and the number of 1s di�er by at
most 2.

4. Fooling sets

Prove that each of the following languages is not regular.

30. The set of all strings in {0, 1}∗ with more 0s than 1s. 〈〈S14〉〉

31. The set of all strings in {0, 1}∗ with fewer 0s than 1s.

32. The set of all strings in {0, 1}∗ with exactly twice as many 0s as 1s.
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33. The set of all strings in {0, 1}∗ with at least twice as many 0s as 1s.

34.
{

02n
∣∣ n ≥ 0

}
〈〈Lab〉〉

35.
{

0Fn
∣∣ n ≥ 0

}
, where Fn is the nth Fibonacci number, de�ned recursively as follows:

Fn :=


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 otherwise(
Hint: If Fi + Fj is a Fibonacci number, then either i = j ± 1 or min {i, j} ≤ 2.

)
(Hard.)

36.
{

0n3 ∣∣ n ≥ 0
}

37.
{
x#y

∣∣ x, y ∈ {0, 1}∗ and #(0, x) = #(1, y)
}

38.
{
xxc

∣∣ x ∈ {0, 1}∗}, where xc is the complement of x, obtained by replacing every 0 in x with a 1
and vice versa. For example, 0001101c = 1110010.

39. The language of properly balanced strings of parentheses, described by the context-free grammar
S → ε | SS | (S). 〈〈Lab〉〉

40.
{

(01)n(10)n
∣∣ n ≥ 0

}
41.

{
(01)m(10)n

∣∣ n ≥ m ≥ 0
}

42.
{
w#x#y

∣∣ w, x, y ∈ Σ∗ and w, x, y are not all equal
}

5. Regular or Not?

For each of the following languages, either prove that the language is regular (by describing a DFA, NFA,
or regular expression), or prove that the language is not regular (using a fooling set argument). Unless
otherwise speci�ed, all alphabets are 0, 1.

43. 〈〈F14〉〉 The set of all strings in {0, 1}∗ in which the substrings 01 and 10 appear the same
number of times. (For example, the substrings 01 and 01 each appear three times in the string
1100001101101.)

44. 〈〈F14〉〉 The set of all strings in {0, 1}∗ in which the substrings 00 and 11 appear the same
number of times. (For example, the substrings 00 and 11 each appear three times in the string
1100001101101.)

45. 〈〈F14〉〉
{
www

∣∣ w ∈ Σ∗
}

46. 〈〈F14〉〉
{
wxw

∣∣ w, x ∈ Σ∗
}

47. The set of all strings in {0, 1}∗ such that in every pre�x, the number of 0s is greater than the
number of 1s.

48. The set of all strings in {0, 1}∗ such that in every non-empty pre�x, the number of 0s is greater
than the number of 1s.

49.
{

0m1n
∣∣ 0 ≤ m− n ≤ 374

}
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50.
{

0m1n
∣∣ 0 ≤ m+ n ≤ 374

}
51. The language generated by the following context-free grammar:

S → 0A1 | ε
A→ 1S0 | ε

52. The language generated by the following context-free grammar:

S → 0S1 | 1S0 | ε

53.
{
w#x

∣∣ w, x ∈ {0, 1}∗ and no substring of w is also a substring of x
}

54.
{
w#x

∣∣ w, x ∈ {0, 1}∗ and no non-empty substring of w is also a substring of x
}

(Hard.)

55.
{
w#x

∣∣ w, x ∈ {0, 1}∗ and every non-empty substring of w is also a substring of x
}

56.
{
w#x

∣∣ w, x ∈ {0, 1}∗ and w is a substring of x
}

57.
{
w#x

∣∣ w, x ∈ {0, 1}∗ and w is a proper substring of x
}

58.
{
xy
∣∣ #(0, x) = #(1, y) and #(1, x) = #(0, y)

}
(Hard.)

59.
{
xy
∣∣ #(0, x) = #(1, y) or #(1, x) = #(0, y)

}
6. Product/Subset Constructions

For each of the following languages L ⊆ {0, 1}∗, formally describe a DFA M = (Q, {0, 1} , s, A, δ) that
recognizes L. Do not attempt to draw the DFA. Instead, give a complete, precise, and self-contained
description of the state set Q, the start state s, the accepting state A, and the transition function δ. Do
not just describe several smaller DFAs and write �product construction!�

60. 〈〈S14〉〉 All strings that satisfy all of the following conditions:

60.A. the number of 0s is even

60.B. the number of 1s is divisible by 3

60.C. the total length is divisible by 5

61. All strings that satisfy at least one of the following conditions: . . .

62. All strings that satisfy exactly one of the following conditions: . . .

63. All strings that satisfy exactly two of the following conditions: . . .

64. All strings that satisfy an odd number of of the following conditions: . . .

65. Other possible conditions:
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65.A. The number of 0s in w is odd.

65.B. The number of 1s in w is not divisible by 5.

65.C. The length
∣∣w∣∣ is divisible by 7.

65.D. The binary value of w is divisible by 7.

65.E. The binary value of wR is not divisible by 7.

65.F. w contains the substring 00

65.G. w does not contain the substring 11

65.H. ww does not contain the substring 101

7. NFA Construction

Let L be an arbitrary regular language Σ = {0, 1}. Prove that each of the following languages over
{0, 1} is regular. �Describe� does not necessarily mean �draw�.

66. All strings where the 374th symbol from the end is 0.

67. All strings that satisfy at least one of the following conditions:

67.A. The number of 0s is even

67.B. The number of 1s is divisible by 3

67.C. The total length is divisible by 5

68. 〈〈lab〉〉 All strings such that in every pre�x, the number of 0s and the number of 1s di�er by at
most 2.

69. 〈〈lab〉〉 All strings such that in every substring, the number of 0s and the number of 1s di�er by
at most 2.

8. Regular Language Transformations

Let L be an arbitrary regular language over the alphabet Σ = {0, 1}. Prove that each of the following
languages over {0, 1} is regular. �Describe� does not necessarily mean �draw�.

70. Lc :=
{
wc
∣∣ w ∈ L}, where wc is the complement of w, de�ned recursively as follows:

wc :=


ε if w = ε

1 · xc if w = 0x for some string x

0 · xc if w = 1x for some string x

For example, 0001101c = 1110010.

71. OneInFront(L) := {1x | x ∈ L}

72. OnlyOnes(L) :=
{

1#(1,w)
∣∣ w ∈ L}
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73. OnlyOnes
−1(L) :=

{
w
∣∣ 1#(1,w) ∈ L

}
74. MissingFirst(L) := {w ∈ Σ∗ | aw ∈ L for some symbol a ∈ Σ}

75. The language Prefixes(L) := {x | xy ∈ L for some string x ∈ Σ∗}.

76. Suffixes(L) := {y | xy ∈ L for some string y ∈ Σ∗}

77. 〈〈lab, F14〉〉 Evens(L) := {evens(w) | w ∈ L}, where the functions evens and odds are recursively
de�ned as follows:

evens(w) :=

{
ε if w = ε

odds(x) if w = ax
odds(w) :=

{
ε if w = ε

a · evens(x) if w = ax

For example, evens(0001101) = 010 and odds(0001101) = 0011.

78. 〈〈lab, F14〉〉 Evens−1(L) := {w | evens(w) ∈ L}, where the functions evens and odds are recur-
sively de�ned as above.

79. Shuffle(L) :=
{
shu�e(w, x)

∣∣ w, x ∈ L}, where the function shu�e is de�ned recursively as
follows:

shu�e(w, x) :=

{
x if w = ε

a · shu�e(x, y) if w = ay for some a ∈ Σ and some y ∈ Σ∗

For example, shu�e(0001101, 1111) = 01010111101

80. Scramble(L) :=
{
scramble(w)

∣∣ w ∈ L}, where the function scramble is de�ned recursively as
follows:

scramble(w) :=

{
w if

∣∣w∣∣ ≤ 1

ba · scramble(x) if w = abx for some a, b ∈ Σ and x ∈ Σ∗

For example, scramble(00 01 10 1) = 00 10 01 1.

9. Context-Free Grammars

Construct context-free grammars for each of the following languages, and give a brief explanation of
how your grammar works, including the language of each non-terminal.

81. All strings in {0, 1}∗ whose length is divisible by 5.

82. All strings in which the substrings 00 and 11 appear the same number of times.

83. All strings in which the substrings 01 and 01 appear the same number of times.

84.
{

0n12n | n ≥ 0
}

85. {0m1n | n 6= 2m}

86.
{

0i1j2i+j | i, j ≥ 0
}

87.
{

0i+j#0j#0i | i, j ≥ 0
}
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88.
{

0i1j2k | j 6= i+ k
}

89.
{
w#0#(0,w)

∣∣ w ∈ {0, 1}∗}
90.

{
0i1j2k | i = j or j = k or i = k

}
91.

{
0i1j2k | i 6= j or j 6= k

}
92.

{
02i1i+j22j | i, j ≥ 0

}
93.

{
x#yR

∣∣ x, y ∈ {0, 1}∗ and x 6= y
}

94. All strings in {0, 1}∗ that are not palindromes.

95. {0, 1}∗ \ {ww | w ∈ {0, 1}∗} 〈〈lab〉〉

96.
{

0n1an+b
∣∣ n ≥ 0

}
, where a and b are arbitrary natural numbers.

97.
{

0n1an−b
∣∣ n ≥ b/a

}
, where a and b are arbitrary natural numbers.

10. True or False (sanity check)

For each statement below, check �True� if the statement is always true and �False� otherwise.
Read each statement very carefully. Some of these are deliberately subtle. On the other hand,

you should not spend more than two minutes on any single statement.

De�nitions

98. Every language is regular.

99. For all languages L, if L is regular then L can be represented by a regular expression.

100. For all languages L, if L is not regular then L cannot be represented by a regular expression.

101. For all languages L, if L can be represented by a regular expression then L is regular.

102. For all languages L, if L cannot be represented by a regular expression then L is not regular.

103. For all languages L, if there is a DFA that accepts every string in L, then L is regular.

104. For all languages L, if there is a DFA that accepts every string not in L, then L is not regular.

105. For all languages L, if there is a DFA that rejects every string not in L, then L is regular.

106. For all languages L, if for every string w ∈ L there is a DFA that accepts w, then L is regular.
〈〈S14〉〉

107. For all languages L, if for every string w 6∈ L there is a DFA that rejects w, then L is regular.

108. For all languages L, if some DFA recognizes L, then some NFA also recognizes L.

109. For all languages L, if some NFA recognizes L, then some DFA also recognizes L.
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Closure Properties

110. For all regular languages L and L′, the language L ∩ L′ is regular.

111. For all regular languages L and L′, the language L ∪ L′ is regular.

112. For all regular languages L, the language L∗ is regular.

113. For all regular languages A, B, and C, the language (A ∪B) \ C is regular.

114. For all languages L ⊆ Σ∗, if L is regular, then Σ∗ \ L is regular.

115. For all languages L ⊆ Σ∗, if L is regular, then Σ∗ \ L is not regular.

116. For all languages L ⊆ Σ∗, if L is not regular, then Σ∗ \ L is regular.

117. For all languages L ⊆ Σ∗, if L is not regular, then Σ∗ \ L is not regular.

118. 〈〈S14〉〉 For all languages L and L′, the language L ∩ L′ is regular.

119. 〈〈F14〉〉 For all languages L and L′, the language L ∪ L′ is regular.

120. For all languages L, the language L∗ is regular. 〈〈F14〉〉

121. For all languages L, if L∗ is regular, then L is regular.

122. For all languages A, B, and C, the language (A ∪B) \ C is regular.

123. For all languages L, if L is �nite, then L is regular.

124. For all languages L and L′, if L and L′ are �nite, then L ∪ L′ is regular.

125. For all languages L and L′, if L and L′ are �nite, then L ∩ L′ is regular.

126. For all languages L, if L contains a �nite number of strings, then L is regular.

127. For all languages L ⊆ Σ∗, if L contains in�nitely many strings in Σ∗, then L is not regular.

128. 〈〈S14〉〉 For all languages L ⊆ Σ∗, if L contains all but a �nite number of strings of Σ∗, then L is
regular.

129. For all languages L ⊆ {0, 1}∗, if L contains a �nite number of strings in 0∗, then L is regular.

130. For all languages L ⊆ {0, 1}∗, if L contains all but a �nite number of strings in 0∗, then L is
regular.

131. If L and L′ are not regular, then L ∩ L′ is not regular.

132. If L and L′ are not regular, then L ∪ L′ is not regular.

133. If L is regular and L ∪ L′ is regular, then L′ is regular. 〈〈S14〉〉

134. If L is regular and L ∪ L′ is not regular, then L′ is not regular. 〈〈S14〉〉

135. If L is not regular and L ∪ L′ is regular, then L′ is regular.

136. If L is regular and L ∩ L′ is regular, then L′ is regular.

137. If L is regular and L ∩ L′ is not regular, then L′ is not regular.
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138. If L is regular and L′ is �nite, then L ∪ L′ is regular. 〈〈S14〉〉

139. If L is regular and L′ is �nite, then L ∩ L′ is regular.

140. If L is regular and L ∩ L′ is �nite, then L′ is regular.

141. If L is regular and L ∩ L′ = ∅, then L′ is not regular.

142. If L is regular and L′ is not regular, then L ∩ L′ = ∅.

143. If L ⊆ L′ and L is regular, then L′ is regular.

144. If L ⊆ L′ and L′ is regular, then L is regular. 〈〈F14〉〉

145. If L ⊆ L′ and L is not regular, then L′ is not regular.

146. If L ⊆ L′ and L′ is not regular, then L is not regular. 〈〈F14〉〉

147. For all languages L ⊆ Σ∗, if L cannot be described by a regular expression, then some DFA accepts
Σ∗ \ L.

148. For all languages L ⊆ Σ∗, if no DFA accepts L, then the complement Σ∗ \ L can be described by
a regular expression.

149. Every context-free language is regular. 〈〈F14〉〉

150. Every regular language is context-free.

Equivalence Classes. Recall that for any language L ⊂ Σ∗, two strings x, y ∈ Σ∗ are equivalent with
respect to L if and only if, for every string z ∈ Σ∗, either both xz and yz are in L, or neither xz nor yz
is in L. We denote this equivalence by x ≡L y.

151. For all languages L, if L is regular, then ≡L has �nitely many equivalence classes.

152. For all languages L, if L is not regular, then ≡L has in�nitely many equivalence classes. 〈〈S14〉〉

153. For all languages L, if ≡L has �nitely many equivalence classes, then L is regular.

154. For all languages L, if ≡L has in�nitely many equivalence classes, then L is not regular.

155. For all regular languages L, each equivalence class of ≡L is a regular language. (Hard.)

156. For all languages L, each equivalence class of ≡L is a regular language.

Fooling Sets

157. For all languages L, if L has an in�nite fooling set, then L is not regular.

158. For all languages L, if L has an �nite fooling set, then L is regular.

159. For all languages L, if L does not have an in�nite fooling set, then L is regular.

160. For all languages L, if L is not regular, then L has an in�nite fooling set.

161. For all languages L, if L is regular, then L has no in�nite fooling set.

162. For all languages L, if L is not regular, then L has no �nite fooling set. 〈〈F14〉〉
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Speci�c Languages (Gut Check). Do not construct complete DFAs, NFAs, regular expressions, or
fooling-set arguments for these languages. You don't have time.

163.
{

0i1j2k | i+ j − k = 374
}
is regular. 〈〈S14〉〉

164.
{

0i1j2k | i+ j − k ≤ 374
}
is regular.

165.
{

0i1j2k | i+ j + k = 374
}
is regular.

166.
{

0i1j2k | i+ j + k > 374
}
is regular.

167.
{

0i1j | i < 374 < j
}
is regular. 〈〈S14〉〉

168.
{

0m1n
∣∣ 0 ≤ m+ n ≤ 374

}
is regular. 〈〈F14〉〉

169.
{

0m1n
∣∣ 0 ≤ m− n ≤ 374

}
is regular. 〈〈F14〉〉

170.
{

0i1j | (i− j) is divisible by 374
}
is regular. 〈〈S14〉〉

171.
{

0i1j | (i+ j) is divisible by 374
}
is regular.

172.
{

0n2 ∣∣ n ≥ 0
}
is regular.

173.
{

037n+4
∣∣ n ≥ 0

}
is regular.

174.
{

0n10n
∣∣ n ≥ 0

}
is regular.

175.
{

0m10n
∣∣ m ≥ 0 and n ≥ 0

}
is regular.

176.
{
w ∈ {0, 1}∗

∣∣ ∣∣w∣∣ is divisible by 374
}
is regular.

177. {w ∈ {0, 1}∗ | w represents a integer divisible by 374 in binary} is regular.

178.

{
w ∈ {0, 1}∗

∣∣∣ w represents a integer divisible by 374 in base 473
}
is regular.

179.
{
w ∈ {0, 1}∗

∣∣ ∣∣#(0, w)−#(1, w)
∣∣ < 374

}
is regular.

180.
{
w ∈ {0, 1}∗

∣∣ ∣∣#(0, x)−#(1, x)
∣∣ < 374 for every pre�x x of w

}
is regular.

181.

{
w ∈ {0, 1}∗

∣∣∣ ∣∣#(0, x)−#(1, x)
∣∣ < 374 for every substring x of w

}
is regular.

182.

{
w0#(0,w)

∣∣∣ w ∈ {0, 1}∗} is regular.

183.

{
w0#(0,w) mod 374

∣∣∣ w ∈ {0, 1}∗} is regular.

Automata Transformations

184. Let M be a DFA over the alphabet Σ. Let M ′ be identical to M , except that accepting states
in M are non-accepting in M ′ and vice versa. Each string in Σ∗ is accepted by exactly one of M
and M ′.

185. Let M be an NFA over the alphabet Σ. Let M ′ be identical to M , except that accepting states
in M are non-accepting in M ′ and vice versa. Each string in Σ∗ is accepted by exactly one of M
and M ′.
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186. If a language L is recognized by a DFA with n states, then the complementary language Σ∗ \ L is
recognized by a DFA with at most n+ 1 states.

187. If a language L is recognized by an NFA with n states, then the complementary language Σ∗ \ L
is recognized by a NFA with at most n+ 1 states.

188. If a language L is recognized by a DFA with n states, then L∗ is recognized by a DFA with at most
n+ 1 states.

189. If a language L is recognized by an NFA with n states, then L∗ is also recognized by a NFA with
at most n+ 1 states.

Language Transformations

190. For every regular language L, the language
{
wR

∣∣ w ∈ L} is also regular.

191. For every language L, if the language
{
wR

∣∣ w ∈ L} is regular, then L is also regular. 〈〈F14〉〉

192. For every language L, if the language
{
wR

∣∣ w ∈ L} is not regular, then L is also not regular.
〈〈F14〉〉

193. For every regular language L, the language
{
w
∣∣ wwR ∈ L

}
is also regular. 〈〈hw〉〉

194. For every regular language L, the language
{
wwR

∣∣ w ∈ L} is also regular.

195. For every language L, if the language
{
w
∣∣ wwR ∈ L

}
is regular, then L is also regular.

(
Hint:

Consider the language L = {0n1n | n ≥ 0}.
)

196. For every regular language L, the language
{

0|w|
∣∣ w ∈ L} is also regular.

197. For every language L, if the language
{

0|w|
∣∣ w ∈ L} is regular, then L is also regular.
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