Pre-lecture brain teaser

Show that NP is closed under the kleene-star operation.

CS/ECE-374: Lecture 28 - Final Exam review

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
May 04, 2021
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Show that NP is closed under the kleene-star operation.

Final Topics

Topics for the final exam include:

- Regular expressions
- DFAs, NFAs,
- Fooling Sets and Closure properties
- Turing Machines and Decidability
- Recursion and Dynamic Programming
- DFS/BFS
- Djikstra, Bellman-Ford (Path finding)
- Reductions/ NP-Completeness

Final Topics

In today's lecture let's focus on a few that you guys had trouble on in the midterms (and the most recent stuff whih you'll be tested on).

- Regular expressions
- DFAs, NFAs,
- Fooling Sets and Closure properties
- Turing Machines and Decidability
- Recursion and Dynamic Programming
- DFS/BFS
- Djikstra, Bellman-Ford (Path finding)
- Reductions/ NP-Completeness

Practice: Asymtotic bounds

Given an asymptotically tight bound for:

$$
\begin{equation*}
\sum_{i=1}^{n} \tag{1}
\end{equation*}
$$

Practice: Regular expressions

Find the regular expression for the language:

$$
\left\{w \in\{0,1\}^{*} \mid \text { wdoes not contain } 00 \text { as a substring }\right\}
$$

Practice: Fooling Sets

Is the following language regular?

$$
L=\{w \mid w \text { has an equal number of 0's and 1's }\}
$$

Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following
statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

1. M accepts the empty string ε -

Which of the following
statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

> 1. M accepts the empty string ε -
> 2. $\delta(s, 010)=\{s, a, c\}$ -

Which of the following
statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

> 1. M accepts the empty string ε -
> 2. $\delta(s, 010)=\{s, a, c\}$ -
> 3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$

Which of the following
statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

1. M accepts the empty string ε -
2. $\delta(s, 010)=\{s, a, c\}-$
3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$
4. M rejects the string 11100111000 -

Which of the following
statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following
statements about M are true?

1. M accepts the empty string ε -
2. $\delta(s, 010)=\{s, a, c\}-$
3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$
4. M rejects the string 11100111000 -
5. $L(M)=(00)^{*}+(111)^{*}-$

Which of the following is true for every language $L \subseteq\{0,1\}^{*}$

1. L^{*} is non-empty -
2. L^{*} is regular -
3. If L is NP-Hard, then L is not regular -
4. If L is not regular, then L is undecidable -

Practice: NP-Complete Reduction

A centipede is an undirected graph formed by a path of length k with two edges (legs) attached to each node on the path as shown in the below figure. Hence, the centipede graph has $3 k$ vertices. The CENTIPEDE problem is the following: given an undirected graph $G=(V, E)$ and an integer k, does G contain a centipede of $3 k$ vertices as a subgraph? Prove that CENTIPEDE is NP-Complete.

Practice: NP-Complete Reduction

What do we need to do to prove Centipede is NP-Complete?

Practice: NP-Complete Reduction

Prove Centipede is in NP:

Practice: NP-Complete Reduction

Prove Centipede is in NP-hard:

Practice: Decidability

Prove (via reduction) that the following language is undecidable.

$$
\text { AcceptOrBust }=\{\langle M\rangle \mid M \text { does not reject any input }\}
$$

Your reduction must involve the SelfHalts problem whihc is known to be undecidable:

$$
\text { SelfHalts }=\{\langle M\rangle \mid M \text { halts on input }\langle M\rangle\}
$$

Practice: Decidability

AcceptOrBust $=\{\langle M\rangle \mid M$ does not reject any input $\}$

SelfHalts $=\{\langle M\rangle \mid M$ halts on input $\langle M\rangle\}$

Reduction: 3SAT to Clique

Consider the two problems:

Problem: 3SAT

Instance: Given a CNF formula φ with n variables, and k clauses
Question: Is there a truth assignment to the variables such that φ evaluates to true

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size $\geq k$?

Reduce 3SAT to CLIQUE

Reduction: 3SAT to Clique

Given a graph G, a set of vertices V^{\prime} is:
clique: every pair of vertices in V^{\prime} is connected by an edge of G.

Reduction: 3SAT to Clique

Bust out the reduction diagram:

Reduction: 3SAT to Clique

Some thoughts:

- Clique is a fully connected graph and very similar to the independent set problem
- We want to have a clique with all the satisfying literals
- Can't have literal and its negation in same clique
- Only need one satisfying literal per clique

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)
$\varphi=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{X_{1}}$)
$\varphi=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)
$\varphi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)
$\varphi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

3SAT to Independent Set Reduction

Very similar to 3SAT to independent set reduction:

Figure 1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

