Algorithms \& Models of Computation

 CS/ECE 374 B, Spring 2020
Deterministic Finite Automata (DFAs)

Lecture 3
Wednesday, January 29, 2020

ATEXed: January 19, 2020 04:13

Part I

DFA Introduction

DFAs also called Finite State Machines (FSMs)

- The "simplest" model for computers?
- State machines that are common in practice.
- Vending machines
- Elevators
- Digital watches
- Simple network protocols
- Programs with fixed memory

A simple program

Program to check if a given input string w has odd length

$$
\begin{aligned}
& \text { int } \boldsymbol{n}=0 \\
& \text { While input is not finished } \\
& \quad \text { read next character } \boldsymbol{c} \\
& \quad \boldsymbol{n} \leftarrow \boldsymbol{n}+\mathbf{1} \\
& \text { endWhile } \\
& \text { If (} \boldsymbol{n} \text { is odd) output YES } \\
& \text { Else output NO }
\end{aligned}
$$

A simple program

Program to check if a given input string w has odd length

$$
\begin{aligned}
& \text { int } \boldsymbol{n}=\mathbf{0} \\
& \text { While input is not finished } \\
& \quad \text { read next character } \boldsymbol{c} \\
& \quad \boldsymbol{n} \leftarrow \boldsymbol{n}+\mathbf{1} \\
& \text { endWhile } \\
& \text { If (} \boldsymbol{n} \text { is odd) output YES } \\
& \text { Else output NO }
\end{aligned}
$$

```
bit \(x=0\)
While input is not finished
        read next character \(C\)
        \(x \leftarrow\) flip \((x)\)
    endWhile
    If ( \(x=1\) ) output YES
    Else output NO
```


Another view

- Machine has input written on a read-only tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are accepting
- Machine accepts input string if it is in an accepting state after scanning the last symbol.

Graphical Representation/State Machine

- Directed graph with nodes representing states and edge/arcs representing transitions labeled by symbols in $\boldsymbol{\Sigma}$
- For each state (vertex) \boldsymbol{q} and symbol $\boldsymbol{a} \in \boldsymbol{\Sigma}$ there is exactly one outgoing edge labeled by a
- Initial/start state has a pointer (or labeled as $\boldsymbol{s}, \boldsymbol{q}_{\mathbf{0}}$ or "start")
- Some states with double circles labeled as accepting/final states

Graphical Representation

- Where does 001 lead? 10010?

Graphical Representation

- Where does 001 lead? 10010?
- Which strings end up in accepting state?

Graphical Representation

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Can you prove it?

Graphical Representation

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state \boldsymbol{q} by reading one letter of \boldsymbol{w} from left to right.

Graphical Representation

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out \boldsymbol{w} ends in an accepting state.

Graphical Representation

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

Definition

The language accepted (or recognized) by a DFA M is denote by $L(M)$ and defined as: $L(M)=\{w \mid M$ accepts $w\}$.

Warning

" M accepts language L " does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in $\boldsymbol{\Sigma}^{*} \backslash \boldsymbol{L}$.

Warning

" M accepts language L " does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in $\boldsymbol{\Sigma}^{*} \backslash \boldsymbol{L}$.
M "recognizes" L is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ is a five tuple where

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, s, A)$ is a five tuple where

- \boldsymbol{Q} is a finite set whose elements are called states,
- $\boldsymbol{\Sigma}$ is a finite set called the input alphabet,

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- $\boldsymbol{\Sigma}$ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \mathbf{Q} \times \boldsymbol{\Sigma} \rightarrow \boldsymbol{Q}$ is the transition function,

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ is a five tuple where

- \boldsymbol{Q} is a finite set whose elements are called states,
- $\boldsymbol{\Sigma}$ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \boldsymbol{Q} \times \boldsymbol{\Sigma} \rightarrow \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, s, A)$ is a five tuple where

- \boldsymbol{Q} is a finite set whose elements are called states,
- $\boldsymbol{\Sigma}$ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \boldsymbol{Q} \times \boldsymbol{\Sigma} \rightarrow \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,
- $\boldsymbol{A} \subseteq \boldsymbol{Q}$ is the set of accepting/final states.

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, s, A)$ is a five tuple where

- \boldsymbol{Q} is a finite set whose elements are called states,
- $\boldsymbol{\Sigma}$ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \boldsymbol{Q} \times \boldsymbol{\Sigma} \rightarrow \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,
- $\boldsymbol{A} \subseteq \boldsymbol{Q}$ is the set of accepting/final states.

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, s, A)$ is a five tuple where

- \boldsymbol{Q} is a finite set whose elements are called states,
- $\boldsymbol{\Sigma}$ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \boldsymbol{Q} \times \boldsymbol{\Sigma} \rightarrow \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,
- $\boldsymbol{A} \subseteq \boldsymbol{Q}$ is the set of accepting/final states.

Common alternate notation: \boldsymbol{q}_{0} for start state, \boldsymbol{F} for final states.

DFA Notation

$$
M=(\overbrace{Q}^{\text {set of all states }}, \underbrace{\Sigma_{Q}}_{\text {alphabet }}, \overbrace{\boldsymbol{\delta}}^{\text {transition func }}, \underbrace{\boldsymbol{s}}_{\text {start state }}, \overbrace{\boldsymbol{A}}^{\text {set of all accept states }})
$$

Example

- $Q=$

Example

- $Q=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$

Example

- $Q=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$
- $\boldsymbol{\Sigma}=$

Example

- $Q=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$
- $\Sigma=\{0,1\}$

Example

- $Q=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$
- $\boldsymbol{\Sigma}=\{0,1\}$
- δ

Example

- $Q=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$
- $\boldsymbol{\Sigma}=\{0,1\}$
- δ
- $s=$

Example

- $Q=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$
- $\boldsymbol{\Sigma}=\{0,1\}$
- δ
- $s=q_{0}$

Example

- $Q=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$
- $\boldsymbol{\Sigma}=\{0,1\}$
- δ
- $s=q_{0}$
- $A=$

Example

- $Q=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=q_{0}$
- $A=\left\{q_{0}\right\}$

Extending the transition function to strings

Given DFA $M=(Q, \Sigma, \delta, s, A), \delta(q, a)$ is the state that M goes to from \boldsymbol{q} on reading letter \boldsymbol{a}

Useful to have notation to specify the unique state that M will reach from \boldsymbol{q} on reading string w

Extending the transition function to strings

Given DFA $M=(Q, \boldsymbol{\Sigma}, \delta, s, A), \delta(q, a)$ is the state that M goes to from \boldsymbol{q} on reading letter \boldsymbol{a}

Useful to have notation to specify the unique state that M will reach from \boldsymbol{q} on reading string w

Transition function $\delta^{*}: Q \times \boldsymbol{\Sigma}^{*} \rightarrow Q$ defined inductively as follows:

- $\delta^{*}(q, w)=q$ if $w=\epsilon$
- $\delta^{*}(q, w)=\delta^{*}(\delta(q, a), x)$ if $w=a x$.

Formal definition of language accepted by \mathbf{M}

Definition

The language $L(M)$ accepted by a DFA $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \in A\right\}
$$

Example

What is:

- $\delta^{*}\left(q_{1}, \epsilon\right)$
- $\delta^{*}\left(q_{0}, 1011\right)$
- $\delta^{*}\left(q_{1}, 010\right)$
- $\delta^{*}\left(q_{4}, 10\right)$

Example continued

- What is $L(M)$ if start state is changed to q_{1} ?
- What is $L(M)$ if final/accept states are set to $\left\{q_{2}, q_{3}\right\}$ instead of $\left\{q_{0}\right\}$?

Advantages of formal specification

- Necessary for proofs
- Necessary to specify abstractly for class of languages

Exercise: Prove by induction that for any two strings u, v, any state $q, \delta^{*}(q, u v)=\delta^{*}\left(\delta^{*}(q, u), v\right)$.

Part II

Constructing DFAs

DFAs: State $=$ Memory

How do we design a DFA M for a given language L ? That is $L(M)=L$.

- DFA is a like a program that has fixed amount of memory independent of input size.
- The memory of a DFA is encoded in its states
- The state/memory must capture enough information from the input seen so far that it is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)

DFA Construction: Example

Assume $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$

- $L=\emptyset, L=\Sigma^{*}, L=\{\epsilon\}, L=\{0\}$.

DFA Construction: Example

Assume $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$

- $L=\emptyset, L=\Sigma^{*}, L=\{\epsilon\}, L=\{0\}$.
- $L=\left\{w \in\{0,1\}^{*}| | w \mid\right.$ is divisible by $\left.\mathbf{5}\right\}$

DFA Construction: Example

Assume $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$

- $L=\emptyset, L=\Sigma^{*}, L=\{\epsilon\}, L=\{0\}$.
- $L=\left\{w \in\{0,1\}^{*}| | w \mid\right.$ is divisible by 5$\}$
- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with 01$\}$

DFA Construction: Example

Assume $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$

- $L=\emptyset, L=\Sigma^{*}, L=\{\epsilon\}, L=\{0\}$.
- $L=\left\{w \in\{0,1\}^{*}| | w \mid\right.$ is divisible by 5$\}$
- $L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ ends with 01$\}$
- $L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ contains 001 as substring $\}$

DFA Construction: Example

Assume $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$

- $L=\emptyset, L=\Sigma^{*}, L=\{\epsilon\}, L=\{0\}$.
- $L=\left\{w \in\{0,1\}^{*}| | w \mid\right.$ is divisible by $\left.\mathbf{5}\right\}$
- $L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ ends with 01$\}$
- $L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ contains 001 as substring $\}$
- $L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ contains 001 or 010 as substring $\}$

DFA Construction: Example

Assume $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$

- $L=\emptyset, L=\Sigma^{*}, L=\{\epsilon\}, L=\{0\}$.
- $L=\left\{w \in\{0,1\}^{*}| | w \mid\right.$ is divisible by $\left.\mathbf{5}\right\}$
- $L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ ends with 01$\}$
- $L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ contains 001 as substring $\}$
- $L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ contains 001 or 010 as substring $\}$
- $L=\{w \mid w$ has a $1 k$ positions from the end $\}$

DFA Construction: Example

$L=\{$ Binary numbers congruent to $0 \bmod 5\}$ Example: $1101011=107=\mathbf{2} \bmod 5,1010=10=0 \bmod 5$

DFA Construction: Example

$L=\{$ Binary numbers congruent to $0 \bmod 5\}$
Example: $1101011=107=2 \bmod 5,1010=10=0 \bmod 5$ Key observation:
$w 0 \bmod 5=a$ implies
$w 0 \bmod 5=2 a \bmod 5$ and $w 1 \bmod 5=(2 a+1) \bmod 5$

Part III

Product Construction and Closure Properties

Part IV

Complement

Complement

Question: If M is a DFA, is there a DFA M^{\prime} such that $L\left(M^{\prime}\right)=\Sigma^{*} \backslash L(M)$? That is, are languages recognized by DFAs closed under complement?

Complement

Example...

Just flip the state of the states!

Complement

Theorem
 Languages accepted by DFAs are closed under complement.

Complement

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ such that $L=L(M)$.
Let $M^{\prime}=(Q, \Sigma, \delta, s, Q \backslash A)$. Claim: $L\left(M^{\prime}\right)=\bar{L}$. Why?

Complement

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ such that $L=L(M)$.
Let $M^{\prime}=(Q, \Sigma, \delta, s, Q \backslash A)$. Claim: $L\left(M^{\prime}\right)=\bar{L}$. Why? $\delta_{M}^{*}=\delta_{M^{\prime}}^{*}$. Thus, for every string $w, \delta_{M}^{*}(s, w)=\delta_{M^{\prime}}^{*}(s, w)$. $\delta_{M}^{*}(s, w) \in A \Rightarrow \delta_{M^{\prime}}^{*}(s, w) \notin Q \backslash A$. $\delta_{M}^{*}(s, w) \notin A \Rightarrow \delta_{M^{\prime}}^{*}(s, w) \in Q \backslash A$.

Product Construction

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$?
How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$?
How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?
Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$?
How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?
Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Catch: We want a single DFA M that can only read w once.

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$?
How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?
Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate M_{1} and M_{2} in parallel by keeping track of states of both machines

Example

Example

Example

Cross-product machine

Example II

Accept all binary strings of length divisible by 3 and 5

Assume all edges are labeled by $\mathbf{0}, \mathbf{1}$.

Product construction for intersection

$$
M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right) \text { and } M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, \boldsymbol{A}_{2}\right)
$$

Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=$

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=$

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \boldsymbol{\Sigma} \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=
$$

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \boldsymbol{\Sigma} \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \boldsymbol{\Sigma} \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=$

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \boldsymbol{\Sigma} \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, q_{2} \in A_{2}\right\}$

Product construction for intersection

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \boldsymbol{\Sigma} \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, q_{2} \in A_{2}\right\}$

Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.

Correctness of construction

Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.

Correctness of construction

Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.
Exercise: Assuming lemma prove the theorem in previous slide.

Correctness of construction

Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.
Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on $|w|$

Product construction for union

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \boldsymbol{\Sigma} \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=$

Product construction for union

$M_{1}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \boldsymbol{\Sigma}, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \boldsymbol{\Sigma} \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}\right.$ or $\left.q_{2} \in A_{2}\right\}$

Theorem

$L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

Set Difference

Theorem
 M_{1}, M_{2} DFAs. There is a DFA M such that $L(M)=L\left(M_{1}\right) \backslash L\left(M_{2}\right)$.

Exercise: Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union

