
Discussion 07b: Friday, March 6, 2020 Version: 1.0 CS/ECE 374 B, Spring 2020

Describe and analyze dynamic programming algorithms for the following problems. Use the backtracking
algorithms you developed on Wednesday.

1 Given an array A[1 .. n] of integers, compute the length of a longest increasing subsequence of A.

Solution:
[two parameters] Add a sentinel value A[0] = −∞. Let LIS(i, j) denote the length of the longest
increasing subsequence of A[j . . n] where every element is larger than A[i]. This function obeys the
following recurrence:

LIS(i, j) =


0 if j > n

LIS(i, j + 1) if j ≤ n and A[i] ≥ A[j]

max {LIS(i, j + 1), 1 + LIS(j, j + 1)} otherwise

We need to compute LIS(0, 1).

We can memoize the function LIS into an array LIS[0 . . n, 1 . . n + 1]. Each entry LIS[i, j] depends
only on entries in the next column LIS[·, j + 1], so we can fill the array in reverse column-major order,
scanning right to left in the outer loop, and bottom to top in the inner loop.

LIS(A[1 .. n]):
A[0]← −∞ Add a sentinel
for i← 0 to n Base cases
LIS[i, n+ 1]← 0

for j ← n down to 1
for i← j − 1 down to 0

if A[i] ≥ A[j]
LIS[i, j]← LIS[i, j + 1]

else
LIS[i, j]← max

{
LIS[i, j + 1], 1 + LIS[j, j + 1]

}
return LIS[0, 1]

The resulting algorithm runs in O(n2) time .

Solution:
[one parameter] Add a sentinel value A[0] = −∞. Let LIS(i) denote the length of the longest increasing
subsequence of A[i . . n] that begins with A[i]. This function obeys the following recurrence:

LIS(i) = 1 +max
{
LIS(j)

∣∣ j > i and A[j] > A[i]
}

(Here we define max∅ = 0 so that the base cases are correct.) We need to compute LIS(0)− 1.
We can memoize the function LIS into a one-dimensional array, which we can fill in reverse order as
follows:

LIS(A[1 .. n]):
A[0] = −∞ Add a sentinel

for i← n downto 0
LIS[i]← 1
for j ← i+ 1 to n

if A[j] > A[i] and 1 + LIS[j] > LIS[i]
LIS[i]← 1 + LIS[j]

return LIS[0]− 1Don’t count the sentinel1



The resulting algorithm runs in O(n2) time .

2 Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence of A.

Solution:
[two parameters] Add a sentinel value A[0] =∞. Let LIS(i, j) denote the length of the longest decreasing
subsequence of A[j . . n] where every element is smaller than A[i]. This function obeys the following
recurrence:

LDS(i, j) =


0 if j > n

LDS(i, j + 1) if j ≤ n and A[i] ≤ A[j]

max {LDS(i, j + 1), 1 + LDS(j, j + 1)} otherwise

We need to compute LDS(0, 1).

We can memoize the function LDS into an array LIS[0 . . n, 1 . . n + 1]. Each entry LDS[i, j] depends
only on entries in the next column LDS[·, j +1], so we can fill the array in reverse column-major order,
scanning right to left in the outer loop, and bottom to top in the inner loop.

LDS(A[1 .. n]):
A[0]← −∞ Add a sentinel
for i← 0 to n Base cases
LDS[i, n+ 1]← 0

for j ← n down to 1
for i← j − 1 down to 0

if A[i] ≤ A[j]
LDS[i, j]← LDS[i, j + 1]

else
LDS[i, j]← max

{
LDS[i, j + 1], 1 + LDS[j, j + 1]

}
return LIS[0, 1]

The resulting algorithm runs in O(n2) time .

Solution:
[clever] The following algorithm runs in O(n2) time .

LDS(A[1 . . n]):
for i← 1 to n
Z[i]← −A[i]

return LIS(Z)

Here LIS is the longest-increasing-subsequence algorithm we developed for problem 1.

3 Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence of A.

2



Solution:
We define two functions:

• Let LAS+(i, j) denote the length of the longest alternating subsequence of A[j . . n] whose first
element (if any) is larger than A[i] and whose second element (if any) is smaller than its first.

• Let LAS−(i, j) denote the length of the longest alternating subsequence of A[j . . n] whose first
element (if any) is smaller than A[i] and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

LAS+(i, j) =


0 if j > n

LAS+(i, j + 1) if j ≤ n and A[j] ≤ A[i]

max
{
LAS+(i, j + 1), 1 + LAS−(j, j + 1)

}
otherwise

LAS−(i, j) =


0 if j > n

LAS−(i, j + 1) if j ≤ n and A[j] ≥ A[i]

max
{
LAS−(i, j + 1), 1 + LAS+(j, j + 1)

}
otherwise

The length of the longest alternating subsequence is

max
j

max
{
1 + LAS+(j, j + 1), 1 + LAS−(j, j + 1)

}
.

Here j is the index of the first entry in the longest alternating subsequence.

We can memoize these functions into two-dimensional arrays LAS+[0 . . n, 1 . . n+ 1] and LAS−[0 . . n,
1 . . n+ 1]. Each entry LAS±[i, j] depends only on entries in the next column of either the same array
or the other array. So we can fill both arrays in parallel, scanning right to left in the outer loop, and
bottom to top in the inner loop.

LAS(A[1 .. n]):
for i← 0 to n Base cases
LAS+[i, n+ 1]← 0
LAS−[i, n+ 1]← 0

for j ← n down to 1
for i← j − 1 down to 1

LAS+[i, j]← LAS+[i, j + 1]
LAS−[i, j]← LAS−[i, j + 1]
if A[i] < A[j]

LAS+[i, j]← max
{
LAS+[i, j], 1 + LAS−[j, j + 1]

}
if A[i] > A[j]

LAS−[i, j]← max
{
LAS−[i, j], 1 + LAS+[j, j + 1]

}
`← 0
for j ← 1 to n
`← max

{
`, 1 + LAS+[j, j + 1], 1 + LAS−[j, j + 1]

}
return `

The resulting algorithm runs in O(n2) time .

3



Solution:
[greedy] The following greedy algorithm computes the length of the longest alternating subsequence in
O(n) time .

GreedyLAS(A[1 . . n]):
Elide runs of the same element
m← 1
B[1]← A[1]
for i← 2 to n

if A[i] 6= B[m]
m← m+ 1
B[m]← A[i]

Count local extrema
`← 2
for i← 2 to m− 1

if B[i] < min {B[i− 1], B[i+ 1]} or B[i] > max {B[i− 1], B[i+ 1]}
`← `+ 1

return `

We need to prove that this greedy algorithm is correct.1 Assume without loss of generality that A[i] 6=
A[i+1] for all i; any alternating subsequence contains at most one element from any run of equal values.

Let 1 = x1 < x2 < x3 < · · · < x` = n be the indices of all local minima and local maxima of A; these
are the elements counted in the final for-loop of GreedyLAS. The following claim immediately implies
that no alternating subsequence of A has length greater than `.

Claim 0.1. For any alternating subsequence S of A, there is an alternating subsequence of A with the
same length as S, in which every element is a local extremum of A.

Proof: The local extrema A[xj ] divide A into `−1 contiguous blocks Aj = A[xj−1 . . xj ], which overlap
at their endpoints and which alternate between increasing and decreasing.

Let S be an arbitrary subsequence of A. For each index j from 1 to `, we modify S as follows to
obtain a new alternating subsequence with the same length as S. Assume without loss of generality
that A[xj−1] < A[xj ]; the other case is symmetric.

• If S contains no elements of block Aj , there is nothing to do.

• Suppose S contains exactly one element of Aj . If that element is a local maximum of S, replace it
with A[xj ]. Similarly, if that element is a local minimum of S, replace it with A[xj−1].

• Suppose S contains exactly two elements of Aj ; the first must be a local minimum of S and the
second must be a local maximum of S. Replace those two elements with A[xj−1] and A[xj ].

• S cannot contain more than two elements of Aj , because S is alternating.

After performing this modification inside every block, S contains only local extrema of A, as required.

4 Given an array A[1 .. n] of integers, compute the length of a longest convex subsequence of A.

4



Solution:
Let LCS(i, j) denote the length of the longest convex subsequence of A[i . . n] whose first two elements
are A[i] and A[j]. This function obeys the following recurrence:

LCS(i, j) = 1 +max
{
LCS(j, k)

∣∣ j < k ≤ n and A[i] +A[k] > 2A[j]
}

Here we define max∅ = 0; this gives us a working base case. The length of the longest convex
subsequence is max1≤i<j≤n LCS(i, j).

We can memoize the function LCS into a two-dimensional array, which we can fill in reverse row-major
order in O(n3) time as follows:

LCS(A[1 . . n]):
`← 0
for i← n− 1 down to 1

for j ← n down to i+ 1
LCS[i, j]← 1

for k ← j + 1 to n
if A[i] +A[k] > 2A[j]

LCS[i, j]← max {LCS[i, j], 1 + LCS[j, k]}
`← max {`, LCS[i, j]}

return `

5 Given an array A[1 .. n], compute the length of a longest palindrome subsequence of A.

Solution:
[recursive brute force] Let LPS(i, j) denote the length of the longest palindrome subsequence of A[i . . j].
This function obeys the following recurrence:

LPS(i, j) =



0 if i > j

1 if i = j

max

{
LPS(i+ 1, j)

LPS(i, j − 1)

}
if i < j and A[i] 6= A[j]

max


2 + LPS(i+ 1, j − 1)

LPS(i+ 1, j)

LPS(i, j − 1)

 otherwise

We need to compute LPS(1, n).
We can memoize the function LPS into a two-dimensional array. Each entry depends on the LPS[i, j]
depends on (at most) three entries LPS[i+ 1, j], LPS[i, j − 1], and LPS[i+ 1, j − 1] immediately below
and/or to the left. Thus, we can fill the array from bottom to top in the outer loop, and from left to
right in inner loop, as follows:

LPS(A[1 . . n]):
for i← n down to 1

LPS[i, i− 1]← 0
LPS[i, i]← 1
for j ← i+ 1 to n

LPS[i, j]← max
{
LPS[i+ 1, j], LPS[i, j − 1]

}
if A[i] = A[j]

LPS[i, j]← max
{
LPS[i, j], 2 + LPS[i+ 1, j − 1]

}
return LPS[1, n]

5



The resulting algorithm runs in O(n2) time .

Solution:
[greedy optimization] Let LPS(i, j) denote the length of the longest palindrome subsequence of A[i . . j].
This function obeys the following recurrence:

LPS(i, j) =


0 if i > j

1 if i = j

2 + LPS(i+ 1, j − 1) if i < j and A[i] = A[j]

max {LPS(i+ 1, j), LPS(i, j − 1)} otherwise

See the Lab 7 solutions for a proof. We need to compute LPS(1, n).

We can memoize the function LPS into a two-dimensional array. Each entry depends on the LPS[i, j]
depends on (at most) three entries LPS[i+ 1, j], LPS[i, j − 1], and LPS[i+ 1, j − 1] immediately below
and/or to the left. Thus, we can fill the array from bottom to top in the outer loop, and from left to
right in inner loop, as follows:

LPS(A[1 . . n]):
for i← n down to 1

LPS[i, i− 1]← 0
LPS[i, i]← 1
for j ← i+ 1 to n

if A[i] = A[j]
LPS[i, j]← 2 + LPS[i+ 1, j − 1]

else
LPS[i, j]← max

{
LPS[i+ 1, j], LPS[i, j − 1]

}
return LPS[1, n]

The resulting algorithm runs in O(n2) time . See, the optimization didn’t actually help!

6


