
HW 2: Solved Problem Instructors: Hassanieh, Miller

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.0

Solved problem

1 C comments are the set of strings over alphabet Σ = {∗, /, A,�,�Enter�} that form a proper
comment in the C program language and its descendants, like C++ and Java. Here �Enter�
represents the newline character,� represents any other whitespace character (like the space and
tab characters), and A represents any non-whitespace character other than ∗ or /.1 There are two
types of C comments:

• Line comments: Strings of the form // · · ·�Enter� .

• Block comments: Strings of the form /∗ · · · ∗/.

Following the C99 standard, we explicitly disallow nesting comments of the same type. A line
comment starts with // and ends at the first �Enter� after the opening //. A block comment
starts with /∗ and ends at the first ∗/ completely after the opening /∗; in particular, every block
comment has at least two ∗s. For example, each of the following strings is a valid C comment:

• / ∗ ∗ ∗ /
• //�//��Enter�
• / ∗ ///�∗��Enter� ∗ ∗ /
• / ∗�//��Enter��∗ /

On the other hand, none of the following strings is a valid C comments:

• / ∗ /
• //�//��Enter���Enter�
• / ∗�/ ∗�∗ /�∗ /

1.A. Describe a DFA that accepts the set of all C comments.

1.B. Describe a DFA that accepts the set of all strings composed entirely of blanks (�), newlines
(�Enter�), and C comments.

You must explain in English how your DFAs work. Drawings or formal descriptions without
English explanations will receive no credit, even if they are correct.

1The actual C commenting syntax is considerably more complex than described here, because of character and string
literals.

• The opening /∗ or // of a comment must not be inside a string literal (” · · · ”) or a (multi-)character literal (′ · · · ′).
• The opening double-quote of a string literal must not be inside a character literal (′”′) or a comment.

• The closing double-quote of a string literal must not be escaped (\”)
• The opening single-quote of a character literal must not be inside a string literal (” · · · ′ · · · ”) or a comment.

• The closing single-quote of a character literal must not be escaped (\′)

1

Solution:
1.A. The following eight-state DFA recognizes the language of C comments. All missing transi-

tions lead to a hidden reject state.

/*A◇

*

/

/

↲

*

*

/

A◇↲

/A◇↲
s /

// L

/* /** B

The states are labeled mnemonically as follows:
• s - We have not read anything.
• / - We just read the initial /.
• // - We are reading a line comment.
• L - We have read a complete line comment.
• /* - We are reading a block comment, and we did not just read a ∗ after the opening

/∗.
• /** - We are reading a block comment, and we just read a ∗ after the opening /∗.
• B - We have read a complete block comment.

1.B. By merging the accepting states of the previous DFA with the start state and adding
white-space transitions at the start state, we obtain the following six-state DFA. Again, all
missing transitions lead to a hidden reject state.

/*A◇

*

/

/↲

*
/

A◇↲

s /

//

/*/**

◇↲

/A◇↲*

• A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.

For example, the string ”/ ∗ \\\” ∗ /”/ ∗ ”/ ∗ \”/ ∗ ” ∗ / is a valid string literal (representing the 5-character string /∗\”\∗/,
which is itself a valid block comment!) followed immediately by a valid block comment. For this homework question,
just pretend that the characters ′, ”, and \ don’t exist.
Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.
Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other

languages, like OCaml, explicitly allow nesting block comments.

2

The states are labeled mnemonically as follows:

• s - We are between comments.
• / - We just read the initial / of a comment.
• // - We are reading a line comment.
• /* - We are reading a block comment, and we did not just read a ∗ after the opening

/∗.
• /** - We are reading a block comment, and we just read a ∗ after the opening /∗.

Rubric: 10 points = 5 for each part, using the standard DFA design rubric (scaled)

Rubric:[DFA design] For problems worth 10 points:

• 2 points for an unambiguous description of a DFA, including the states set Q, the start state
s, the accepting states A, and the transition function δ.

– For drawings: Use an arrow from nowhere to indicate s, and doubled circles to indicate
accepting states A. If A = ∅, say so explicitly. If your drawing omits a reject state, say
so explicitly. Draw neatly! If we can’t read your solution, we can’t give you credit for
it,.

– For text descriptions: You can describe the transition function either using a 2d array,
using mathematical notation, or using an algorithm.

– For product constructions: You must give a complete description of the states and
transition functions of the DFAs you are combining (as either drawings or text), together
with the accepting states of the product DFA.

• Homework only: 4 points for briefly and correctly explaining the purpose of each state in
English. This is how you justify that your DFA is correct.

– For product constructions, explaining the states in the factor DFAs is enough.
– Deadly Sin: (“Declare your variables.”) No credit for the problem if the English de-

scription is missing, even if the DFA is correct.

• 4 points for correctness. (8 points on exams, with all penalties doubled)

– −1 for a single mistake: a single misdirected transition, a single missing or extra accept
state, rejecting exactly one string that should be accepted, or accepting exactly one string
that should be accepted.

– −2 for incorrectly accepting/rejecting more than one but a finite number of strings.
– −4 for incorrectly accepting/rejecting an infinite number of strings.

• DFA drawings with too many states may be penalized. DFA drawings with significantly too
many states may get no credit at all.

• Half credit for describing an NFA when the problem asks for a DFA.

3

