#### Duerview

theory course on problem solving Gin CS, writing a program

designing, algorithms

efficient or demonstrating that a problem can't be solved efficiently

mathematically proving

### Jutline

I. Models of Computation finite automata > regular exprs

context-free grammars

Turing machines

II. Algorithm Design

divide 4 conquer dynamic programming

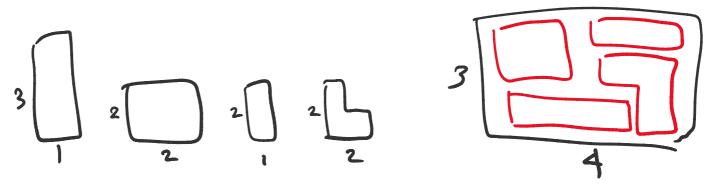
groedy

graph algorithms

Undecidability & NP-Completeness

Given n numbers, are there 3 numbers summing to 1007 inscribing are there 3 numbers summing to 100?

e.g. 81, 43, 95, 20, 32, 74, 25


brute-force algin:  $O(n^3)$  time

smarter algin:  $O(n^2)$  time

fastest? OPEN!

Current record:  $O(\frac{n^2}{\log^2 n})$ ( C. 2018)

Given in polygons & a box, rectangle can they be packed in box?



no efficient algm believed possible (NP-complete)

Given n polygons (infinite # ropies), can they tile entire plane?



# no algm possible (undecidable)

# PART I. MODELS OF COMPUTATION

# Math Prelims

## Strings

A string is a finite sequence of symbols from a finite set Z

called alphabet ( Let Ex = { all strings over E}

e.g. strings over  $\Sigma = \{0,1\}$ :

0110, 10,000,0

& denotes the empty string

Let x, y be strings.

length 1x1

e.g. |0110|=4, |\(\mathbb{E}\)|=0.

Concatenation X4

e.g. x= 10, y=011 =) xy=10011

 $xy \neq yx$ 

$$(xy)$$
 =  $x(yz)$ 

1xy1 = 1x1+ 191

x = 3x = x3

c) the power 
$$x^{i} = x \cdot \cdot \cdot \times x$$
 $eg. (101)^{3} = 101101101$ 
 $x^{0} = E$ 

d)  $x$  is a substring of  $y$  if

 $y = w \times 2$  for some strings  $w, 2$ 

( prefix if  $w = E$ , suffix if  $2E$ )

e) other ops:

 $x^{R} = reverse of x$ 

(can be defined recursively:

 $x^{R} = \begin{cases} & & \text{if } x = ey \\ & & \text{for some} \end{cases}$ 
 $x^{R} = \begin{cases} & & \text{if } x = ey \\ & & \text{for some} \end{cases}$ 
 $x^{R} = \begin{cases} & & \text{yR} \\ & & \text{yR} \end{cases}$ 

(xy) $x^{R} = y^{R} \times x^{R}$  (Labla)

Languages

A language is a set of strings

(i.e.  $x^{R} = x^{R} \cdot x^{R}$ )

e.g.  $x^{R} = x^{R} \cdot x^{R}$ 

(all words in English dictionary)

Cristal 1 (all words in English dictionary)

finite, { (all words in English dictionary), boring! (over E={'a',--, 'z'}). infinite,
wore
interesting

(all syntatically valid Java programs)

(all prime numbers written in binary) can encode all decision problems (auguages Let Li, Lz be languages. a) union L.ULZ intersection  $L_1 \cap L_2$ Complement  $L_1 (= L_1) = Z^* \setminus L_1$ différence LILZ = LINTZ. b) concatenation L, Lz = { xy : x € L, y € Lz} e.g. L,={0,00}. Lz={1,01} =) 42= {01,001,0001} e.g.  $L_1 = \{0,00,000,...\} = \{0^i:i_21\}$   $L_2 = \{1,11,111,...\} = \{1^i:i_21\}$ => L, L2 = { oi, j: i71, j71}

c) ith power: 
$$[' = LL...L]$$

e.g.  $\{1,01\}^2 = \{11,0101,101,011\}$ 
 $[' = \{\epsilon\}]$ 
 $[L' = L.[i]]$ 

d) Kleene star

 $[' = [0]] = \{\epsilon\}$ 
 $[L' = [0]] =$