
CS/ECE 374 A: Algorithms & Models of

Computation, Spring 2020

More DP: Edit Distance and
Independent Sets in Trees
Lecture 15
March 10, 2020

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 1 Spring 2020 1 / 43

Warm-up

Definition
A string is a palindrome if w = wR .
Examples: I , RACECAR, MALAYALAM , DOOFFOOD

Problem: Given a string w find the longest subsequence of w that
is a palindrome.

Example
MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has
MHYMRORMYHM as a palindromic subsequence

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 2 Spring 2020 2 / 43

Warm-up

Definition
A string is a palindrome if w = wR .
Examples: I , RACECAR, MALAYALAM , DOOFFOOD

Problem: Given a string w find the longest subsequence of w that
is a palindrome.

Example
MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has
MHYMRORMYHM as a palindromic subsequence

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 2 Spring 2020 2 / 43

Exercise

Assume w is stored in an array A[1..n]

LPS(i , j): length of longest palindromic subsequence of A[i ..j].

Recursive expression/code?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 3 Spring 2020 3 / 43

Part I

Edit Distance and Sequence Alignment

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 4 Spring 2020 4 / 43

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xm and y1y2 . . . yn what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 5 Spring 2020 5 / 43

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xm and y1y2 . . . yn what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 5 Spring 2020 5 / 43

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xm and y1y2 . . . yn what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 5 Spring 2020 5 / 43

Edit Distance

Definition
Edit distance between words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X .

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MOND→MONED→MONEY

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 6 Spring 2020 6 / 43

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) (xi aligned with yj) such that

each index appears at most once, and

there is no crossing: if (i , j), (i ′, j ′) ∈ M and i < i ′ then j < j ′.

In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.

Cost of an alignment is:

mismatched columns + # unmatched indices in both strings.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 7 Spring 2020 7 / 43

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) (xi aligned with yj) such that

each index appears at most once, and

there is no crossing: if (i , j), (i ′, j ′) ∈ M and i < i ′ then j < j ′.

In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.

Cost of an alignment is:

mismatched columns + # unmatched indices in both strings.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 7 Spring 2020 7 / 43

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) (xi aligned with yj) such that

each index appears at most once, and

there is no crossing: if (i , j), (i ′, j ′) ∈ M and i < i ′ then j < j ′.

In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.

Cost of an alignment is:

mismatched columns + # unmatched indices in both strings.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 7 Spring 2020 7 / 43

More Examples

X = GOT, Y = GOAT

X = ABCD, Y = EFGH

X = ABCD, Y = EBDH

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 8 Spring 2020 8 / 43

Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 9 Spring 2020 9 / 43

Applications

1 Spell-checkers and Dictionaries

2 Unix diff

3 DNA sequence alignment . . . but, we need a new metric

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 10 Spring 2020 10 / 43

Similarity Metric

Definition
For two strings X and Y , the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M , we incur cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 11 Spring 2020 11 / 43

Similarity Metric

Definition
For two strings X and Y , the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M , we incur cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 11 Spring 2020 11 / 43

An Example

Example

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 12 Spring 2020 12 / 43

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

374

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 13 Spring 2020 13 / 43

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

373

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 14 Spring 2020 14 / 43

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

37

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 15 Spring 2020 15 / 43

Sequence Alignment

Input Given two words X and Y , and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost

Recall: An alignment is a set M of pairs (i , j) (i.e., xi aligned with yj) so that

each index appears at most once, and

there is no crossing: if (i , j), (i ′, j ′) ∈ M and i < i ′ then j < j ′.

Question: X = x1 . . . xi . . . xm and
Y = y1 . . . yj . . . yn. Can I have (i , n), (m, j) ∈ M?

Then what are the options for xm and yn?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 16 Spring 2020 16 / 43

Sequence Alignment

Input Given two words X and Y , and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost

Recall: An alignment is a set M of pairs (i , j) (i.e., xi aligned with yj) so that

each index appears at most once, and

there is no crossing: if (i , j), (i ′, j ′) ∈ M and i < i ′ then j < j ′.

Question: X = x1 . . . xi . . . xm and
Y = y1 . . . yj . . . yn. Can I have (i , n), (m, j) ∈ M?

Then what are the options for xm and yn?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 16 Spring 2020 16 / 43

Sequence Alignment

Input Given two words X and Y , and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost

Recall: An alignment is a set M of pairs (i , j) (i.e., xi aligned with yj) so that

each index appears at most once, and

there is no crossing: if (i , j), (i ′, j ′) ∈ M and i < i ′ then j < j ′.

Question: X = x1 . . . xi . . . xm and
Y = y1 . . . yj . . . yn. Can I have (i , n), (m, j) ∈ M?

Then what are the options for xm and yn?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 16 Spring 2020 16 / 43

Edit distance: Alignment view
Basic observation

Let X = γxm and Y = βyn
γ, β: strings.

Consider last column of the optimal alignment of the two strings:
γ xm

β yn
or

γ xm

βyn
or

γxm

β yn

Observation
Prefixes must have optimal alignment!

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 43

Problem Structure

Observation
Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (xm, yn) are not
matched then either the xm remains unmatched or yn remains
unmatched.

1 Case xm and yn are matched.
1 Pay mismatch cost αxmyn plus cost of aligning strings

x1 · · · xm−1 and y1 · · · yn−1

2 Case xm is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

3 Case yn is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 18 Spring 2020 18 / 43

Problem Structure

Observation
Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (xm, yn) are not
matched then either the xm remains unmatched or yn remains
unmatched.

1 Case xm and yn are matched.
1 Pay mismatch cost αxmyn plus cost of aligning strings

x1 · · · xm−1 and y1 · · · yn−1

2 Case xm is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

3 Case yn is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 18 Spring 2020 18 / 43

Subproblems and Recurrence

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 19 Spring 2020 19 / 43

Subproblems and Recurrence

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 19 Spring 2020 19 / 43

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ

m1 = αA[m],B[n] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
m2 = δ + EDIST (A[1..(m − 1)],B[1..n])
m3 = δ + EDIST (A[1..m],B[1..(n − 1)]))
return min(m1,m2,m3)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 20 Spring 2020 20 / 43

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = αA[m],B[n] + EDIST (A[1..(m − 1)],B[1..(n − 1)])

m2 = δ + EDIST (A[1..(m − 1)],B[1..n])
m3 = δ + EDIST (A[1..m],B[1..(n − 1)]))
return min(m1,m2,m3)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 20 Spring 2020 20 / 43

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = αA[m],B[n] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
m2 = δ + EDIST (A[1..(m − 1)],B[1..n])
m3 = δ + EDIST (A[1..m],B[1..(n − 1)]))

return min(m1,m2,m3)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 20 Spring 2020 20 / 43

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = αA[m],B[n] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
m2 = δ + EDIST (A[1..(m − 1)],B[1..n])
m3 = δ + EDIST (A[1..m],B[1..(n − 1)]))
return min(m1,m2,m3)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 20 Spring 2020 20 / 43

Example

DEED and DREAD

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 21 Spring 2020 21 / 43

Memoization

Optimal Costs
Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj . Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

Declare M[0..m][0..n]. M[i , j] stores the value of Opt(i , j).

Then, M[i , j] = min


αxi ,yj + M[i − 1, j − 1],

δ + M[i − 1, j],
δ + M[i , j − 1]

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 22 Spring 2020 22 / 43

Memoization

Optimal Costs
Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj . Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

Declare M[0..m][0..n]. M[i , j] stores the value of Opt(i , j).

Then, M[i , j] = min


αxi ,yj + M[i − 1, j − 1],

δ + M[i − 1, j],
δ + M[i , j − 1]

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 22 Spring 2020 22 / 43

Memoization

Optimal Costs
Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj . Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

Declare M[0..m][0..n]. M[i , j] stores the value of Opt(i , j).

Then, M[i , j] = min


αxi ,yj + M[i − 1, j − 1],

δ + M[i − 1, j],
δ + M[i , j − 1]

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 22 Spring 2020 22 / 43

Matrix and DAG of Computation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure: The iterative algorithm can compute values in row order.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 23 Spring 2020 23 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i , j] = min


αA[i],B[j] + M[i − 1, j − 1],

δ + M[i − 1, j],
δ + M[i , j − 1]

Analysis

Running time is O(mn). Space used is O(mn).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 24 Spring 2020 24 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i , j] = min


αA[i],B[j] + M[i − 1, j − 1],

δ + M[i − 1, j],
δ + M[i , j − 1]

Analysis

Running time is O(mn). Space used is O(mn).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 24 Spring 2020 24 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i , j] = min


αA[i],B[j] + M[i − 1, j − 1],

δ + M[i − 1, j],
δ + M[i , j − 1]

Analysis

Running time is O(mn).

Space used is O(mn).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 24 Spring 2020 24 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i , j] = min


αA[i],B[j] + M[i − 1, j − 1],

δ + M[i − 1, j],
δ + M[i , j − 1]

Analysis

Running time is O(mn). Space used is O(mn).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 24 Spring 2020 24 / 43

Example

DEED and DREAD

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 25 Spring 2020 25 / 43

Sequence Alignment in Practice

1 Typically the DNA sequences that are aligned are about 105

letters long!

2 So about 1010 operations and 1010 bytes needed

3 The killer is the 10GB storage

4 Can we reduce space requirements?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 26 Spring 2020 26 / 43

Optimizing Space

1 Recall

M(i , j) = min


αxi yj + M(i − 1, j − 1),

δ + M(i − 1, j),
δ + M(i , j − 1)

2 Entries in j th column only depend on (j − 1)st column and
earlier entries in j th column

3 Only store the current column and the previous column reusing
space; N(i , 0) stores M(i , j − 1) and N(i , 1) stores M(i , j)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 27 Spring 2020 27 / 43

Computing in column order to save space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure: M(i , j) only depends on previous column values. Keep only two
columns and compute in column order.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 28 Spring 2020 28 / 43

Space Efficient Algorithm

for all i do N[i , 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N[i , 1] = min


αxi yj + N[i − 1, 0]

δ + N[i − 1, 1]

δ + N[i , 0]
for i = 1 to m do

Copy N[i , 0] = N[i , 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 29 Spring 2020 29 / 43

Analyzing Space Efficiency

1 From the m × n matrix M we can construct the actual
alignment (exercise)

2 Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

3 Space efficient computation of alignment? More complicated
algorithm — see notes and Kleinberg-Tardos book.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 30 Spring 2020 30 / 43

Part II

Longest Common Subsequence
Problem

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 31 Spring 2020 31 / 43

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y .

Example
LCS between ABAZDC and BACBAD is

4 via ABAD

Derive a dynamic programming algorithm for the problem.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 32 Spring 2020 32 / 43

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y .

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 32 Spring 2020 32 / 43

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y .

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 32 Spring 2020 32 / 43

Part III

Maximum Weighted Independent Set
in Trees

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 33 Spring 2020 33 / 43

Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 34 Spring 2020 34 / 43

Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 34 Spring 2020 34 / 43

Maximum Weight Independent Set in a Tree

Input Tree T = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 35 Spring 2020 35 / 43

Towards a Recursive Solution

For an arbitrary graph G :

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 If graph G is arbitrary there was no good ordering that resulted
in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 36 Spring 2020 36 / 43

Towards a Recursive Solution

For an arbitrary graph G :

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 If graph G is arbitrary there was no good ordering that resulted
in a small number of subproblems.

What about a tree?

Natural candidate for vn is root r of T?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 36 Spring 2020 36 / 43

Towards a Recursive Solution

For an arbitrary graph G :

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 If graph G is arbitrary there was no good ordering that resulted
in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 36 Spring 2020 36 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O :

Then O contains an optimum solution for each subtree
of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 37 Spring 2020 37 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O :Then O contains an optimum solution for each subtree
of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 37 Spring 2020 37 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O :Then O contains an optimum solution for each subtree
of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O.

O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 37 Spring 2020 37 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O :Then O contains an optimum solution for each subtree
of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 37 Spring 2020 37 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O :Then O contains an optimum solution for each subtree
of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 37 Spring 2020 37 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O :Then O contains an optimum solution for each subtree
of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them?

O(n)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 37 Spring 2020 37 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O :Then O contains an optimum solution for each subtree
of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 37 Spring 2020 37 / 43

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 38 Spring 2020 38 / 43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) =

max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

Iterative Algorithm
1 To evaluate OPT (u) need to have computed values of all

children and grandchildren of u.

Compute OPT (u) bottom up.

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

Iterative Algorithm
1 To evaluate OPT (u) need to have computed values of all

children and grandchildren of u.

Compute OPT (u) bottom up.

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

Iterative Algorithm
1 To evaluate OPT (u) need to have computed values of all

children and grandchildren of u.

Compute OPT (u) bottom up.

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

Iterative Algorithm
1 To evaluate OPT (u) need to have computed values of all

children and grandchildren of u.

Compute OPT (u) bottom up.

2 What is an ordering of nodes of a tree T to achieve above?

Post-order traversal of a tree.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

Iterative Algorithm
1 To evaluate OPT (u) need to have computed values of all

children and grandchildren of u.

Compute OPT (u) bottom up.

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 43

Example

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

Post-order traversal:

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 40 Spring 2020 40 / 43

Iterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T (v).

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and
there are n evaluations.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 43

Iterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T (v).

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and
there are n evaluations.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 43

Iterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T (v).

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space:

O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and
there are n evaluations.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 43

Iterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T (v).

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and
there are n evaluations.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 43

Iterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T (v).

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and
there are n evaluations.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 43

Iterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T (v).

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and
there are n evaluations.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 43

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Better running time: A value M[d] is accessed only by a (parent)
and r (grand parent)⇒ O(n).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 42 Spring 2020 42 / 43

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Better running time: A value M[d] is accessed only by a (parent)
and r (grand parent)⇒ O(n).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 42 Spring 2020 42 / 43

Takeaway Points

1 Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

2 Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

3 The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 43 Spring 2020 43 / 43

	Edit Distance and Sequence Alignment
	Longest Common Subsequence Problem
	Maximum Weighted Independent Set in Trees

