CS/ECE 374 A: Algorithms \& Models of Computation, Spring 2020

More DP: Edit Diștance and Independent Sets in Trees

Lecture 15
March 10, 2020

Warm-up

Definition

A string is a palindrome if $w=w^{R}$.
Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Warm-up

Definition

A string is a palindrome if $w=w^{R}$.
Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of w that is a palindrome.

Example

MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has MHYMRORMYHM as a palindromic subsequence

Exercise

Assume \boldsymbol{w} is stored in an array $\boldsymbol{A}[\mathbf{1 . . n}]$
$\operatorname{LPS}(i, j)$: length of longest palindromic subsequence of $A[i . . j]$.
Recursive expression/code?

Part 1

Edit Distance and Sequence Alignment

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?
Question: Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$ what is a distance between them?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?
Question: Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y.

Edit Distance

Definition

Edit distance between words \boldsymbol{X} and \boldsymbol{Y} is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4:
$\underline{\mathrm{FOOD}} \rightarrow \mathrm{MO} \underline{O D} \rightarrow \mathrm{MOND} \rightarrow \mathrm{MONED} \rightarrow$ MONEY

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

$$
\begin{array}{cccccc}
F & O & O & & D & A \\
M & O & N & E & Y &
\end{array}
$$

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set \boldsymbol{M} of pairs $(\boldsymbol{i}, \boldsymbol{j})\left(\boldsymbol{x}_{\boldsymbol{i}}\right.$ aligned with $\left.\boldsymbol{y}_{\boldsymbol{j}}\right)$ such that

- each index appears at most once, and
- there is no crossing: if $(\boldsymbol{i}, \boldsymbol{j}),\left(\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}\right) \in \boldsymbol{M}$ and $\boldsymbol{i}<\boldsymbol{i}^{\prime}$ then $\boldsymbol{j}<\boldsymbol{j}^{\prime}$. In the above example, this is $M=\{(1,1),(2,2),(3,3),(4,5)\}$.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

| F | \mathbf{O} | \mathbf{O} | | \mathbf{D} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{M} | \mathbf{O} | \mathbf{N} | \mathbf{E} | \mathbf{Y} |

Formally, an alignment is a set \boldsymbol{M} of pairs $(\boldsymbol{i}, \boldsymbol{j})\left(\boldsymbol{x}_{\boldsymbol{i}}\right.$ aligned with $\left.\boldsymbol{y}_{\boldsymbol{j}}\right)$ such that

- each index appears at most once, and
- there is no crossing: if $(\boldsymbol{i}, \boldsymbol{j}),\left(\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}\right) \in \boldsymbol{M}$ and $\boldsymbol{i}<\boldsymbol{i}^{\prime}$ then $\boldsymbol{j}<\boldsymbol{j}^{\prime}$. In the above example, this is $M=\{(1,1),(2,2),(3,3),(4,5)\}$. Cost of an alignment is:
\# mismatched columns + \# unmatched indices in both strings.

More Examples

$X=$ GOT, $Y=$ GOAT
$\boldsymbol{X}=\mathrm{ABCD}, \boldsymbol{Y}=\mathrm{EFGH}$
$\boldsymbol{X}=\mathrm{ABCD}, \boldsymbol{Y}=\mathrm{EBDH}$

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Applications

(1) Spell-checkers and Dictionaries
(2) Unix diff
(3) DNA sequence alignment . . . but, we need a new metric

Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is
(1) [Gap penalty] For each gap in the alignment, we incur a cost δ.
(2) [Mismatch cost] For each pair \boldsymbol{p} and \boldsymbol{q} that have been matched in M, we incur cost $\alpha_{p q}$; typically $\alpha_{p p}=0$.

Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is
(1) [Gap penalty] For each gap in the alignment, we incur a cost δ.
(2) [Mismatch cost] For each pair \boldsymbol{p} and \boldsymbol{q} that have been matched in M, we incur cost $\alpha_{p q}$; typically $\alpha_{p p}=0$.
Edit distance is special case when $\delta=\alpha_{p q}=1$.

An Example

Example

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
o & & c & u & r & r & a & n & c & e \\
o & c & c & u & r & r & e & n & c & e
\end{array} \quad \quad \text { Cost }=\delta+\alpha_{a e}
$$

Alternative:

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
o & & c & u & r & r & & a & n & c & e \\
o & c & c & u & r & r & e & & n & c & e
\end{array} \quad \text { Cost }=3 \delta
$$

Or a really stupid solution (delete string, insert other string):

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
o & c & u & r & r & a & n & c & e & & & & & & & & & \\
& & & & & &
\end{array}
$$

Cost $=19 \delta$.

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost $\mathbf{1}$ unit?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost $\mathbf{1}$ unit?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost $\mathbf{1}$ unit?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Sequence Alignment

Input Given two words X and \boldsymbol{Y}, and gap penalty δ and mismatch costs $\alpha_{p q}$
Goal Find alignment of minimum cost

Sequence Alignment

Input Given two words \boldsymbol{X} and \boldsymbol{Y}, and gap penalty δ and mismatch costs $\boldsymbol{\alpha}_{\boldsymbol{p q}}$
 Goal Find alignment of minimum cost

Recall: An alignment is a set \boldsymbol{M} of pairs $(\boldsymbol{i}, \boldsymbol{j})$ (i.e., $\boldsymbol{x}_{\boldsymbol{i}}$ aligned with $\boldsymbol{y}_{\boldsymbol{j}}$) so that

- each index appears at most once, and
- there is no crossing: if $(\boldsymbol{i}, \boldsymbol{j}),\left(\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}\right) \in \boldsymbol{M}$ and $\boldsymbol{i}<\boldsymbol{i}^{\prime}$ then $\boldsymbol{j}<\boldsymbol{j}^{\prime}$.

Question: $X=x_{1} \ldots x_{i} \ldots x_{m}$ and
$Y=y_{1} \ldots y_{j} \ldots y_{n}$. Can I have $(\boldsymbol{i}, n),(m, j) \in M$? NO!

Sequence Alignment

Input Given two words \boldsymbol{X} and \boldsymbol{Y}, and gap penalty δ and mismatch costs $\boldsymbol{\alpha}_{\boldsymbol{p q}}$
 Goal Find alignment of minimum cost

Recall: An alignment is a set \boldsymbol{M} of pairs $(\boldsymbol{i}, \boldsymbol{j})$ (i.e., $\boldsymbol{x}_{\boldsymbol{i}}$ aligned with $\boldsymbol{y}_{\boldsymbol{j}}$) so that

- each index appears at most once, and
- there is no crossing: if $(\boldsymbol{i}, \boldsymbol{j}),\left(\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}\right) \in \boldsymbol{M}$ and $\boldsymbol{i}<\boldsymbol{i}^{\prime}$ then $\boldsymbol{j}<\boldsymbol{j}^{\prime}$.

Question: $X=x_{1} \ldots x_{i} \ldots x_{m}$ and

$$
Y=y_{1} \ldots y_{j} \ldots y_{n} . \text { Can I have }(i, n),(m, j) \in M ?
$$

Then what are the options for $\boldsymbol{x}_{\boldsymbol{m}}$ and $\boldsymbol{y}_{\boldsymbol{n}}$?

Edit distance: Alignment view

Basic observation

Let $X=\gamma x_{m}$ and $Y=\beta y_{n}$
γ, β : strings.
Consider last column of the optimal alignment of the two strings:

γ	$x_{m} \cdot$			
β	y_{n}	or	γ	x_{m}
:---:	:---:			
βy_{n}		or	γx_{m}	
:---:	:---:	:---:		
β	y_{n}	Gptinal $(m, n) \in M$		

Observation

Prefixes must have optimal alignment!

$$
M^{\prime}=M \backslash(m, n) \quad M^{\prime} \quad \text { is opt for }(V, \beta)
$$

Problem Structure

Observation
Let $X=x_{1} x_{2} \cdots x_{m}$ and $Y=y_{1} y_{2} \cdots y_{n}$. If $\left(x_{m}, y_{n}\right)$ are not matched then either the x_{m} remains unmatched or y_{n} remains unmatched.

$$
\begin{aligned}
& \left(y_{1}, x_{i}, y_{1}, y_{j}\right) \\
& \operatorname{OPT}(i, j)=\sin \left\{\begin{array}{l}
\sigma^{T}(i-1, j)+\alpha_{2 a} y_{j} \\
\operatorname{OPT}(i-1, j)+\delta \\
\operatorname{OPT}(i, j-1)+\delta
\end{array}\right. \\
& \operatorname{OPT}(0, j)=j \delta \begin{array}{c}
\forall j \\
\operatorname{OPT}(i, 0)=i \delta \quad \forall i
\end{array}
\end{aligned}
$$

Problem Structure

Observation

Let $X=x_{1} x_{2} \cdots x_{m}$ and $Y=y_{1} y_{2} \cdots y_{n}$. If $\left(x_{m}, y_{n}\right)$ are not matched then either the x_{m} remains unmatched or y_{n} remains unmatched.
(1) Case x_{m} and y_{n} are matched.
(1) Pay mismatch cost $\alpha_{x_{m} y_{n}}$ plus cost of aligning strings $x_{1} \cdots x_{m-1}$ and $y_{1} \cdots y_{n-1}$
(2) Case x_{m} is unmatched.
(1) Pay gap penalty plus cost of aligning $x_{1} \cdots x_{m-1}$ and $y_{1} \cdots y_{n}$
(3) Case y_{n} is unmatched.
(1) Pay gap penalty plus cost of aligning $x_{1} \cdots x_{m}$ and $y_{1} \cdots y_{n-1}$

Subproblems and Recurrence

Optimal Costs

Let $\operatorname{Opt}(i, j)$ be optimal cost of aligning $x_{1} \cdots x_{i}$ and $y_{1} \cdots y_{j}$. Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Subproblems and Recurrence

Optimal Costs

Let $\operatorname{Opt}(i, j)$ be optimal cost of aligning $x_{1} \cdots x_{i}$ and $y_{1} \cdots y_{j}$. Then

$$
\underset{\operatorname{Opt}(\hat{i}, j)=\min }{\operatorname{Opt}\left(x_{1}, x_{i}, y_{1}, . . y_{j}\right)} \frac{\alpha_{x_{i}}+\operatorname{Opt}(i-1, j-1),}{} \begin{aligned}
& \alpha_{i} y_{j} \operatorname{Opt}(i-1, j), \\
& \delta+\operatorname{Opt}(i, j-1)
\end{aligned}
$$

Base Cases: $\operatorname{Opt}(i, 0)=\delta \cdot i$ and $\operatorname{Opt}(0, j)=\delta \cdot j$

Recursive Algorithm

Assume X is stored in array $\boldsymbol{A}[\mathbf{1 . . m}]$ and Y is stored in $B[1 . . n]$

```
EDIST(A[1..m],B[1..n])
    If (m=0) return n\boldsymbol{\delta}
    If ( }\boldsymbol{n}=0\mathbf{0}\mathrm{ ) return m}\boldsymbol{\delta
```


Recursive Algorithm

Assume \boldsymbol{X} is stored in array $\boldsymbol{A}[\mathbf{1 . . m}]$ and Y is stored in $B[\mathbf{1 . . n}]$

```
EDIST(A[1..m], B[1..n])
    If (m=0) return n\boldsymbol{\delta}
    If ( }\boldsymbol{n}=\mathbf{0}\mathrm{ ) return m}\boldsymbol{m
    m1 = 的[m],B[n]}+\operatorname{EDIST}(A[1..(m-1)],B[1..(n-1)]
```


Recursive Algorithm

Assume X is stored in array $\boldsymbol{A}[\mathbf{1 . . m}]$ and Y is stored in $B[\mathbf{1 . . n}]$

```
EDIST(A[1..m], B[1..n])
    If (m=0) return n\boldsymbol{\delta}
    If ( }\boldsymbol{n}=0\mathrm{ ) return m}\boldsymbol{\delta
    m
    m}=\delta+\operatorname{EDIST}(A[1..(m-1)],B[1..n])
    m}=\delta+\operatorname{EDIST}(A[1..m],B[1..(n-1)])
```


Recursive Algorithm

Assume \boldsymbol{X} is stored in array $\boldsymbol{A}[\mathbf{1 . . m}]$ and Y is stored in $B[\mathbf{1 . . n}]$

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
    If ( \(\boldsymbol{m}=\mathbf{0}\) ) return \(\boldsymbol{n} \boldsymbol{\delta}\)
    If ( \(\boldsymbol{n}=\mathbf{0}\) ) return \(\boldsymbol{m} \boldsymbol{\delta}\)
    \(m_{1}=\alpha_{A[m], B[n]}+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
    \(m_{2}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
    \(\left.m_{3}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
    return \(\min \left(m_{1}, m_{2}, m_{3}\right)\)
```


Example

Memoization

Optimal Costs

Let $\operatorname{Opt}(\boldsymbol{i}, \boldsymbol{j})$ be optimal cost of aligning $\boldsymbol{x}_{\mathbf{1}} \cdots \boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{y}_{\mathbf{1}} \cdots \boldsymbol{y}_{\boldsymbol{j}}$. Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base Cases: $\operatorname{Opt}(\boldsymbol{i}, \mathbf{0})=\boldsymbol{\delta} \cdot \boldsymbol{i}$ and $\operatorname{Opt}(\mathbf{0}, \boldsymbol{j})=\boldsymbol{\delta} \cdot \boldsymbol{j}$

Memoization

Optimal Costs

Let $\operatorname{Opt}(\boldsymbol{i}, \boldsymbol{j})$ be optimal cost of aligning $\boldsymbol{x}_{\mathbf{1}} \cdots \boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{y}_{\mathbf{1}} \cdots \boldsymbol{y}_{\boldsymbol{j}}$. Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base Cases: $\operatorname{Opt}(\boldsymbol{i}, \mathbf{0})=\boldsymbol{\delta} \cdot \boldsymbol{i}$ and $\operatorname{Opt}(\mathbf{0}, \boldsymbol{j})=\boldsymbol{\delta} \cdot \boldsymbol{j}$

Declare $\mathbf{M}[\mathbf{0} . . \boldsymbol{m}][\mathbf{0} . . \boldsymbol{n}] . \operatorname{M}[\boldsymbol{i}, \boldsymbol{j}]$ stores the value of $\mathbf{O p t}(\boldsymbol{i}, \boldsymbol{j})$.

Memoization

Optimal Costs

Let $\operatorname{Opt}(\boldsymbol{i}, \boldsymbol{j})$ be optimal cost of aligning $\boldsymbol{x}_{\mathbf{1}} \cdots \boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{y}_{\mathbf{1}} \cdots \boldsymbol{y}_{\boldsymbol{j}}$. Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base Cases: $\operatorname{Opt}(\boldsymbol{i}, \mathbf{0})=\boldsymbol{\delta} \cdot \boldsymbol{i}$ and $\operatorname{Opt}(\mathbf{0}, \boldsymbol{j})=\boldsymbol{\delta} \cdot \boldsymbol{j}$

Declare $\mathbf{M}[\mathbf{0} . . \boldsymbol{m}][\mathbf{0 . . n}] . \mathbf{M}[\boldsymbol{i}, \boldsymbol{j}]$ stores the value of $\mathbf{O p t}(\boldsymbol{i}, \boldsymbol{j})$.
Then, $M[i, j]=\min \left\{\begin{array}{l}\alpha_{x_{i}, y_{j}}+M[i-1, j-1], \\ \delta+M[i-1, j], \\ \delta+M[i, j-1]\end{array}\right.$

Matrix and DAG of Computation

Figure: The iterative algorithm can compute values in row order.

Removing Recursion to obtain Iterative Algorithm

$\operatorname{EDIST}(A[1 . . m], B[1 . . n])$
int $M[0 . . m][0 . . n]$
for $i=1$ to m do $M[i, 0]=i \delta$ for $j=1$ to n do $M[0, j]=j \delta$

Removing Recursion to obtain Iterative Algorithm

$$
\begin{aligned}
& \text { EDIST(} A[1 . . m], B[1 . . n]) \\
& \text { int } M[0 . . m][0 . . n] \\
& \text { for } i=1 \text { to } m \text { do } M[i, 0]=i \delta \\
& \text { for } j=1 \text { to } n \text { do } M[0, j]=j \delta
\end{aligned} \quad \begin{aligned}
& \text { for } i=1 \text { to } m \text { do } \\
& \quad \text { for } j=1 \text { to } n \text { do } \\
& \qquad M[i, j]=\min \left\{\begin{array}{l}
\alpha_{A[i j, B[j]}+M[i-1, j-1], \\
\delta+M[i-1, j] \\
\delta+M[i, j-1]
\end{array}\right.
\end{aligned}
$$

Removing Recursion to obtain Iterative Algorithm

$$
\begin{aligned}
& \text { EDIST(A[1..m], B[1..n]) } \\
& \text { int } M[0 . . m][0 . . n] \\
& \text { for } i=1 \text { to } m \text { do } M[i, 0]=i \delta \\
& \text { for } j=1 \text { to } n \text { do } M[0, j]=j \delta
\end{aligned} \quad \begin{aligned}
& \text { for } i=1 \text { to } m \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& \qquad M[i, j]=\min \left\{\begin{array}{l}
\alpha_{A[i j, B[j]}+M[i-1, j-1], \\
\delta+M[i-1, j], \\
\delta+M[i, j-1]
\end{array}\right. \\
& \hline
\end{aligned}
$$

Analysis

Running time is $O(m n)$.

Removing Recursion to obtain Iterative Algorithm

$$
\begin{aligned}
& \text { EDIST }(A[1 . . m], B[1 . . n]) \\
& \text { int } M[0 . . m][0 . . n] \\
& \text { for } i=1 \text { to } m \text { do } M[i, 0]=i \delta \\
& \text { for } j=1 \text { to } n \text { do } M[0, j]=j \delta
\end{aligned} \quad \begin{aligned}
& \text { for } i=1 \text { to } m \text { do } \\
& \quad \text { for } j=1 \text { to } n \text { do } \\
& \qquad M[i, j]=\min \left\{\begin{array}{l}
\alpha_{A[i j, B[j]}+M[i-1, j-1], \\
\delta+M[i-1, j] \\
\delta+M[i, j-1]
\end{array}\right.
\end{aligned}
$$

Analysis

Running time is $O(m n)$. Space used is $O(m n)$.

Example
DEED and DREAD

Sequence Alignment in Practice

(1) Typically the DNA sequences that are aligned are about $\mathbf{1 0}^{\mathbf{5}}$ letters long!
(2) So about 10^{10} operations and 10^{10} bytes needed
(3) The killer is the 10GB storage
(4) Can we reduce space requirements?

Optimizing Space

(1) Recall

$$
M(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+M(i-1, j-1) \\
\delta+M(i-1, j) \\
\delta+M(i, j-1)
\end{array}\right.
$$

(2) Entries in j th column only depend on $(j-1)$ st column and earlier entries in j th column
(3) Only store the current column and the previous column reusing space; $N(i, 0)$ stores $M(i, j-1)$ and $N(i, 1)$ stores $M(i, j)$

Computing in column order to save space

Figure: $\mathbf{M}(\boldsymbol{i}, \boldsymbol{j})$ only depends on previous column values. Keep only two columns and compute in column order.

Space Efficient Algorithm

$$
\begin{aligned}
& \text { for all } i \text { do } N[i, 0]=i \delta \\
& \text { for } j=1 \text { to } n \text { do } \\
& N[0,1]=j \delta \text { (* corresponds to } M(0, j) *) \\
& \text { for } i=1 \text { to } m \text { do } \\
& \qquad N[i, 1]=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+N[i-1,0] \\
\delta+N[i-1,1] \\
\delta+N[i, 0]
\end{array}\right. \\
& \text { for } i=1 \text { to } m \text { do } \\
& \quad \text { Copy } N[i, 0]=N[i, 1]
\end{aligned}
$$

Analysis

Running time is $O(m n)$ and space used is $O(2 m)=O(m)$

Analyzing Space Efficiency

(1) From the $\boldsymbol{m} \times \boldsymbol{n}$ matrix M we can construct the actual alignment (exercise)
(2) Matrix N computes cost of optimal alignment but no way to construct the actual alignment
(3) Space efficient computation of alignment? More complicated algorithm - see notes and Kleinberg-Tardos book.

Part II

Longest Common Subsequence Problem

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

Example

LCS between ABAZDC and BACBAD is

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

Example

LCS between ABAZDC and BACBAD is 4 via ABAD

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between \boldsymbol{X} and \boldsymbol{Y}.

Example
 LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

Part III

Maximum Weighted Independent Set in Trees

Maximum Weight Independent Set Problem

Input Graph $G=(V, E)$ and weights $w(v) \geq 0$ for each $v \in V$
Goal Find maximum weight independent set in G

Maximum Weight Independent Set Problem

Input Graph $G=(V, E)$ and weights $w(v) \geq 0$ for each $v \in V$
Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: $\{B, D\}$

Maximum Weight Independent Set in a Tree

Input Tree $T=(V, E)$ and weights $w(v) \geq 0$ for each $v \in V$

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: ??

Towards a Recursive Solution

For an arbitrary graph G :
(1) Number vertices as $v_{1}, v_{2}, \ldots, v_{n}$
(2) Find recursively optimum solutions without v_{n} (recurse on $G-v_{n}$) and with $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $G-\boldsymbol{v}_{\boldsymbol{n}}-N\left(\boldsymbol{v}_{\boldsymbol{n}}\right)$ \& include v_{n}).
(3) If graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

Towards a Recursive Solution

For an arbitrary graph G :
(1) Number vertices as $v_{1}, v_{2}, \ldots, v_{n}$
(2) Find recursively optimum solutions without v_{n} (recurse on $G-v_{n}$) and with $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $G-\boldsymbol{v}_{\boldsymbol{n}}-N\left(\boldsymbol{v}_{\boldsymbol{n}}\right)$ \& include v_{n}).
(3) If graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree?

Towards a Recursive Solution

For an arbitrary graph G :
(1) Number vertices as $v_{1}, v_{2}, \ldots, v_{n}$
(2) Find recursively optimum solutions without v_{n} (recurse on $G-v_{n}$) and with $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $G-\boldsymbol{v}_{\boldsymbol{n}}-N\left(\boldsymbol{v}_{\boldsymbol{n}}\right)$ \& include v_{n}).
(3) If graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root r of \boldsymbol{T} ?

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root r of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$:

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$:Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$:Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
Case $\boldsymbol{r} \in \mathcal{O}$: None of the children of \boldsymbol{r} can be in \mathcal{O}.

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$:Then \mathcal{O} contains an optimum solution for each subtree of \boldsymbol{T} hanging at a child of r.
Case $r \in \mathcal{O}$: None of the children of r can be in $\mathcal{O} . \mathcal{O}-\{r\}$ contains an optimum solution for each subtree of \boldsymbol{T} hanging at a grandchild of r.

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$:Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
Case $\boldsymbol{r} \in \mathcal{O}$: None of the children of \boldsymbol{r} can be in $\mathcal{O} . \mathcal{O}-\{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of \boldsymbol{T} rooted at nodes in \boldsymbol{T}.

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root r of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$:Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
Case $r \in \mathcal{O}$: None of the children of r can be in $\mathcal{O} . \mathcal{O}-\{r\}$ contains an optimum solution for each subtree of \boldsymbol{T} hanging at a grandchild of r.

Subproblems? Subtrees of \boldsymbol{T} rooted at nodes in \boldsymbol{T}.
How many of them?

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root r of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$:Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
Case $r \in \mathcal{O}$: None of the children of r can be in $\mathcal{O} . \mathcal{O}-\{r\}$ contains an optimum solution for each subtree of \boldsymbol{T} hanging at a grandchild of r.

Subproblems? Subtrees of \boldsymbol{T} rooted at nodes in \boldsymbol{T}.
How many of them? $O(n)$

Example

A Recursive Solution

$T(u)$: subtree of \boldsymbol{T} hanging at node \boldsymbol{u}
OPT(u): max weighted independent set value in $T(u)$

OPT $(u)=$

A Recursive Solution

$T(u)$: subtree of T hanging at node u
OPT(u): max weighted independent set value in $T(u)$

$$
O P T(u)=\max \left\{\begin{array}{l}
\sum_{v \text { child of } u} \operatorname{OPT}(v) \\
w(u)+\sum_{v \text { grandchild of } u} \operatorname{OPT}(v)
\end{array}\right.
$$

A Recursive Solution

$T(u)$: subtree of T hanging at node u
OPT(u): max weighted independent set value in $T(u)$

$$
O P T(u)=\max \left\{\begin{array}{l}
\sum_{v \text { child of } u} O P T(v) \\
w(u)+\sum_{v \text { grandchild of } u} O P T(v)
\end{array}\right.
$$

Iterative Algorithm

(1) To evaluate $\operatorname{OPT}(u)$ need to have computed values of all children and grandchildren of \boldsymbol{u}.

A Recursive Solution

$T(u)$: subtree of T hanging at node u
OPT(u): max weighted independent set value in $\boldsymbol{T}(u)$

$$
O P T(u)=\max \left\{\begin{array}{l}
\sum_{v \text { child of } u} O P T(v) \\
w(u)+\sum_{v} \text { grandchild of } u
\end{array}\right.
$$

Iterative Algorithm

(1) To evaluate $\operatorname{OPT}(u)$ need to have computed values of all children and grandchildren of \boldsymbol{u}.

Compute OPT(u) bottom up.
(2) What is an ordering of nodes of a tree T to achieve above?

A Recursive Solution

$T(u)$: subtree of T hanging at node u
OPT(u): max weighted independent set value in $\boldsymbol{T}(u)$

$$
O P T(u)=\max \left\{\begin{array}{l}
\sum_{v \text { child of } u} O P T(v) \\
w(u)+\sum_{v} \text { grandchild of } u
\end{array}\right.
$$

Iterative Algorithm

(1) To evaluate $\operatorname{OPT}(u)$ need to have computed values of all children and grandchildren of \boldsymbol{u}.

Compute OPT(u) bottom up.
(2) What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

Example

$$
O P T(u)=\max \left\{\begin{array}{l}
\sum_{v \text { child of } u} O P T(v) \\
w(u)+\sum_{v} \text { grandchild of } u \text { } O P T(v)
\end{array}\right.
$$

Post-order traversal: $C L i d e a f j g b r$

Iterative Algorithm

Declare $\mathbf{M}[\mathbf{1 . . n}] . \boldsymbol{M}[\boldsymbol{v}]$ stores the max weighted independent set value for tree $T(v)$.

Iterative Algorithm

Declare $\mathbf{M}[\mathbf{1 . . n}] . \boldsymbol{M}[\mathbf{v}]$ stores the max weighted independent set value for tree $T(v)$.

MIS-Tree (\boldsymbol{T}) :

Let $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be a post-order traversal of nodes of T for $i=1$ to n do

$$
M\left[v_{i}\right]=\max \binom{\sum_{v_{j} \text { child of } v_{i}} M\left[v_{j}\right],}{w\left(v_{i}\right)+\sum_{v_{j} \text { grandchild of } v_{i}} M\left[v_{j}\right]}
$$

return $M\left[v_{n}\right]$ (* Note: v_{n} is the root of $\boldsymbol{T} *$)

Iterative Algorithm

Declare $\mathbf{M}[\mathbf{1 . . n}] . \boldsymbol{M}[\mathbf{v}]$ stores the max weighted independent set value for tree $T(v)$.

MIS-Tree (\boldsymbol{T}) :

Let $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be a post-order traversal of nodes of T for $\boldsymbol{i}=1$ to n do

$$
M\left[v_{i}\right]=\max \binom{\sum_{v_{j} \text { child of } v_{i}} M\left[v_{j}\right],}{w\left(v_{i}\right)+\sum_{v_{j} \text { grandchild of } v_{i}} M\left[v_{j}\right]}
$$

return $M\left[v_{n}\right]$ (* Note: v_{n} is the root of $\boldsymbol{T} *$)
Space:

Iterative Algorithm

Declare $\mathbf{M}[\mathbf{1 . . n}] . \boldsymbol{M}[\mathbf{v}]$ stores the max weighted independent set value for tree $T(v)$.

MIS-Tree (\boldsymbol{T}) :

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be a post-order traversal of nodes of T for $i=1$ to n do

$$
M\left[v_{i}\right]=\max \binom{\sum_{v_{j} \text { child of } v_{i}} M\left[v_{j}\right],}{w\left(v_{i}\right)+\sum_{v_{j} \text { grandchild of } v_{i}} M\left[v_{j}\right]}
$$

return $M\left[v_{n}\right]$ (* Note: v_{n} is the root of \boldsymbol{T} *)
Space: $\boldsymbol{O}(\boldsymbol{n})$ to store the value at each node of \boldsymbol{T}
Running time:

Iterative Algorithm

Declare $\mathbf{M}[\mathbf{1 . . n}] . \boldsymbol{M}[\mathbf{v}]$ stores the max weighted independent set value for tree $T(v)$.

MIS-Tree (\boldsymbol{T}) :

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be a post-order traversal of nodes of T for $\boldsymbol{i}=1$ to n do

$$
M\left[v_{i}\right]=\max \binom{\sum_{v_{j} \text { child of } v_{i}} M\left[v_{j}\right],}{w\left(v_{i}\right)+\sum_{v_{j} \text { grandchild of } v_{i}} M\left[v_{j}\right]}
$$

return $M\left[v_{n}\right]$ (* Note: v_{n} is the root of $\boldsymbol{T} *$)
Space: $\boldsymbol{O}(\boldsymbol{n})$ to store the value at each node of \boldsymbol{T}
Running time:
(1) Naive bound: $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ since each $\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]$ evaluation may take $\boldsymbol{O}(\boldsymbol{n})$ time and there are \boldsymbol{n} evaluations.

Iterative Algorithm

Declare $\mathbf{M}[\mathbf{1 . . n}] . \boldsymbol{M}[\mathbf{v}]$ stores the max weighted independent set value for tree $T(v)$.

MIS-Tree (\boldsymbol{T}) :

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be a post-order traversal of nodes of T for $\boldsymbol{i}=1$ to n do

$$
M\left[v_{i}\right]=\max \binom{\sum_{v_{j} \text { child of } v_{i}} M\left[v_{j}\right],}{w\left(v_{i}\right)+\sum_{v_{j} \text { grandchild of } v_{i}} M\left[v_{j}\right]}
$$

return $M\left[v_{n}\right]$ (* Note: v_{n} is the root of $\boldsymbol{T} *$)
Space: $\boldsymbol{O}(\boldsymbol{n})$ to store the value at each node of \boldsymbol{T}
Running time:
(1) Naive bound: $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ since each $\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]$ evaluation may take $\boldsymbol{O}(\boldsymbol{n})$ time and there are \boldsymbol{n} evaluations.

Example

Example

Better running time: A value $M[d]$ is accessed only by a (parent) and r (grand parent) $\Rightarrow O(n)$.

Takeaway Points

(1) Dynamic programming is based on finding a recursive way to solve the problem. Need a recursion that generates a small number of subproblems.
(2) Given a recursive algorithm there is a natural DAG associated with the subproblems that are generated for given instance; this is the dependency graph. An iterative algorithm simply evaluates the subproblems in some topological sort of this DAG.
(3) The space required to evaluate the answer can be reduced in some cases by a careful examination of that dependency DAG of the subproblems and keeping only a subset of the DAG at any time.

