CS/ECE 374 A: Algorithms & Models of

Computation, Spring 2020

More DP: Edit Distance and
Independent Sets in Trees

Lecture 15
March 10, 2020

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 1

Definition

A string is a palindrome if w = wR.

Examples: I, RACECAR, MALAYALAM, DOOFFOOD

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 2 Spring 2020 2 /43

Definition

A string is a palindrome if w = wR.

Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of w that
is a palindrome.

MAHDYNAMICPROGRAMZLETMESHOWYOQOUTHEM has
MHYMRORMYHM as a palindromic subsequence

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 2 Spring 2020 2 /43

Exercise

Assume w is stored in an array A[l..n]

LPS(i,j): length of longest palindromic subsequence of A[i..j].

Recursive expression/code?

O: C. Chekuri. U: R. Mehta (UIUC)

CS/ECE 374

Spring 2020 3/43

Part |

Edit Distance and Sequence Alignment

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

0: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 5 / 43

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings X1 X2 . . . Xy, and y1¥> ... y, what is a
distance between them?

0: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 5 / 43

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings X1 X2 . . . Xy, and y1¥> ... y, what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

0: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 5 / 43

Edit distance between words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

| A

FOOD — MOOD — MOND — MONED — MONEY

\

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 6 /43

Edit Distance: Alternate View

Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D A
M O N E Y

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 7 /43

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

oy Ay olny A,

F O O D

M O N E Y

YooY oW ¥
Formally, an alignment is a set M of pairs (i, j) (x; aligned with y;) such that

@ each index appears at most once, and
@ there is no crossing: if (,), (i’,j’) € M and i < i’ then j < j’.
In the above example, this is M = {(1,1), (2, 2), (3, 3),(4,5)}.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 7 /43

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M ONE Y
Formally, an alignment is a set M of pairs (i, j) (x; aligned with y;) such that
@ each index appears at most once, and
@ there is no crossing: if (,), (i’,j’) € M and i < i’ then j < j’.
In the above example, this is M = {(1,1), (2, 2), (3, 3),(4,5)}.
Cost of an alignment is:

mismatched columns 4+ # unmatched indices in both strings.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

More Examples

X = GOT, Y = GOAT
X = ABCD, Y = EFGH

X = ABCD, Y = EBDH

0: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 8 / 43

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 9 /43

Applications

@ Spell-checkers and Dictionaries
@ Unix diff
© DNA sequence alignment ... but, we need a new metric

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 10 / 43

Similarity Metric

For two strings X and Y/, the cost of alignment M is

© [Gap penalty| For each gap in the alignment, we incur a cost 9.

@ [Mismatch cost| For each pair p and g that have been matched
in M, we incur cost apq; typically oy, = 0.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 11 / 43

Similarity Metric

For two strings X and Y/, the cost of alignment M is

© [Gap penalty| For each gap in the alignment, we incur a cost 9.

@ [Mismatch cost| For each pair p and g that have been matched
in M, we incur cost apq; typically oy, = 0.

Edit distance is special case when § = apq = 1.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 11 / 43

An Example

o clulr|rlaln|cl|e

olc|clu|r|r|le|n|c|e Cost = 0 + e
Alternative:

o clul|r|r aln|c|e

olc|lclulr|r|e nlic|e Cost = 36

Or a really stupid solution (delete string, insert other string):

o|Cc|u|rjrjaj/n,cj|e

(o}

c\u|r|rje|n

Cost = 196.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

(A) 1
(B) 2
(©) 3
(D) 4
(E) 5

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 13 / 43

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

373

(A) 1
(B) 2
(©) 3
(D) 4
(E) 5

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 14 / 43

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

(A) 1
(B) 2
(©) 3
(D) 4
(E) 5

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 15 / 43

Sequence Alignment

Input Given two words X and Y, and gap penalty é and
mismatch costs apgq

Goal Find alignment of minimum cost

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 16 / 43

Sequence Alignment

Input Given two words X and Y, and gap penalty é and
mismatch costs apgq

Goal Find alignment of minimum cost

Recall: An alignment is a set M of pairs (i,j) (i.e., x; aligned with y;) so that
@ each index appears at most once, and

@ there is no crossing: if (i,), (i’,j') € M and i < i’ then j < j’.

Question: X = X1 ...X;...Xn and
Y=y1...¥...¥n. Canlhave (i,n),(m,j) € M? NO)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 16 / 43

Sequence Alignment

Input Given two words X and Y, and gap penalty é and
mismatch costs apgq

Goal Find alignment of minimum cost

Recall: An alignment is a set M of pairs (i,j) (i.e., x; aligned with y;) so that
@ each index appears at most once, and

@ there is no crossing: if (i,), (i’,j') € M and i < i’ then j < j’.

Question: X = X1 ...X;...Xn and
Y=y1...¥...¥n. Canlhave (i,n),(m,j) € M?

Then what are the options for x,, and y,?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

Edit distance: Alignment view

Basic observation

Let X = vx,, and Y = By,
~, B~ strings.

Consider last column of the optimal alignment of the two strings:

X % X
i M or 7 m or T Xm

B Yn BYn B Yn
Btirad (on ;) €M

Observation
Prefixes must have optimal alignment!

\lm) Mmoot n (Y, T—"’)

M|'.M

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 17 / 43

Problem Structure

Observation

Let X = x1xp++*Xm and Y = y1¥2+++ Yn. If (Xmy Yn) are not
matched then either the x,, remains unmatched or y, remains
unmatched.

R T RS
oPT (5,3 = ovimm ort (i, 0) + S
(')(’7(1-J j_t) 4+ 3
or7(e,y) =J 9% V]
0P7(2,0) = 4% Y4

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

Problem Structure

Observation

Let X = x1xp++*Xm and Y = y1¥2+++ Yn. If (Xmy Yn) are not
matched then either the x,, remains unmatched or y, remains
unmatched.

Q@ Case x,, and y,, are matched.
@ Pay mismatch cost a,,y, plus cost of aligning strings
X1+ Xm—1and y1---yn—1
@ Case x,, is unmatched.
@ Pay gap penalty plus cost of aligning xq1+++Xm—1 and y1 -+ - yn
© Case y, is unmatched.
@ Pay gap penalty plus cost of aligning x3+++ X, and y1++ - Yn—1

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 18 / 43

Subproblems and Recurrence

Optimal Costs

Let Opt(i,) be optimal cost of aligning x; - - - x; and y; « - - y;.
Then

Olxy; + Opt(i — 1,5 — 1),
Opt(i,j) = min { § + Opt(i — 1,)),
d + Opt(i,j — 1)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

Subproblems and Recurrence

Optimal Costs

Let Opt(i,) be optimal cost of aligning x; - - - x; and y; « - - y;.
Then

J‘Vf (ﬂ%,rx““ -') Axy; + Opt(i — 1 /i = 1)7
Opt(i,j) = min< § + Opt(i — 1,j),
o+ Opt(i,j - 1)

Base Cases: Opt(i,0) =6 - i and Opt(0,) =5 -

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]

EDIST (A[1..m], B[1..n])
If (m=0) return né
If (n=0) return md

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 20 / 43

Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]

EDIST (A[1..m], B[1..n])
If (m=0) return né
If (n=0) return md
my = A[m),B[n] + EDIST (A[1..(m — 1)], B[1..(n — 1)])

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 20 / 43

Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]

EDIST (A[1..m], B[1..n])
If (m=0) return né
If (n=0) return md
my = A[m),B[n] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
my = § + EDIST (A[1..(m — 1)], B[1..n])
m3 = § + EDIST(A[1..m], B[1..(n — 1)]))

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 20 / 43

Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]

EDIST (A[1..m], B[1..n])
If (m=0) return nd
If (n=0) return mé
my = A[m),B[n] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
my = § + EDIST (A[1..(m — 1)], B[1..n])
m3 = § + EDIST(A[1..m], B[1..(n — 1)]))
return min(my, my, ms3)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 20 / 43

Example

DEED and DREAD ('DEE D,

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 2 Spring 2020 21 /43

Memoization

Optimal Costs

Let Opt (i,) be optimal cost of aligning xi «+ - x; and y; - -+ yj. Then

axiyj + Opt(i - la.j - 1)’
Opt(i,j) = min< § + Opt(i — 1,j),
o+ Opt(ia.i - 1)

Base Cases: Opt(i,0) = 6 - i and Opt(0,j) =6 -j

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

Memoization

Optimal Costs

Let Opt (i,) be optimal cost of aligning xi «+ - x; and y; - -+ yj. Then

axiyj + Opt(i - la.j - 1)’
Opt(i,j) = min< § + Opt(i — 1,j),
o+ Opt(ia.i - 1)

Base Cases: Opt(i,0) = 6 - i and Opt(0,j) =6 -j

Declare M[0..m][0..n]. M[i, j] stores the value of Opt(i,j).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

Memoization

Optimal Costs

Let Opt (i,) be optimal cost of aligning xi «+ - x; and y; - -+ yj. Then

axiyj + Opt(i - la.j - 1)’
Opt(i,j) = min< § + Opt(i — 1,j),
o+ Opt(ia.i - 1)

Base Cases: Opt(i,0) = 6 - i and Opt(0,j) =6 -j

Declare M[0..m][0..n]. M[i, j] stores the value of Opt(i,j).
Clxiy; + M[i —1,j—1],

Then, M[i,j] = min{ & + M[i — 1,],
0+ Mli,j—1]

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

Matrix and DAG of Computation

Figure: The iterative algorithm can compute values in row order.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 23 /43

Removing Recursion to obtain lterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do M[i,0] =i§
for j =1 to n do M[0,j] =jd

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 24 / 43

Removing Recursion to obtain lterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do M[i,0] =i§
for j =1 to n do M[0,j] =jd

for i=1 to m do
for j=1 to n do

aail,e + Mli — 1,5 — 1],
M[’a.l] =minq 6+ M[’ - 17j]7
o + M['a./ - 1]

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 24 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do M[i,0] =i§
for j =1 to n do M[0,j] =jd

for i=1 to m do
for j=1 to n do

aail,e + Mli — 1,5 — 1],
M[”J] =minq 6+ M[’ - 17]]7
o + M["J - 1]

Running time is O(mn). \

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 24 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do M[i,0] =i§
for j =1 to n do M[0,j] =jd

for i=1 to m do
for j=1 to n do

aail,e + Mli — 1,5 — 1],
M[”J] =minq 6+ M[’ - 17]]7
o + M["J - 1]

Running time is O(mn). Space used is O(mn). \

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 24 / 43

25 / 43

Spring 2020

<
~
o)
L
O
&
%)
@)

(UIUC)

DEED and DREAD

O: C. Chekuri. U: R. Mehta

Sequence Alignment in Practice

@ Typically the DNA sequences that are aligned are about 10°
letters long! '

@ So about 10'? operations and 10 bytes needed
© The killer is the 10GB storage

© Can we reduce space requirements?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 26 / 43

Optimizing Space

@ Recall

ax,-yj + M(i - l?j - 1)’
M(i,j) = min< § + M(i — 1,j),
o + M(’a./ - 1)

@ Entries in jth column only depend on (j — 1)st column and
earlier entries in jth column

© Only store the current column and the previous column reusing
space; N(i, Q) stores M(i,j — 1) and N(i, 1) stores M(i, j)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 27 / 43

Computing in column order to save space

e

Figure: M(i,) only depends on previous column values. Keep only two
columns and compute in column order.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 28 / 43

Space Efficient Algorithm

for a1l i do N[i,0] = id
for j=1 to n do
N[0,1] = j& (* corresponds to M(0,j) *)
for i=1 to m do
Clxy; + N[i —1,0]
N[i,1] = min< 6 + N[i — 1,1]
d + NI[i, 0]
for i=1 to m do
Copy NI[i,0] = N[i, 1]

Running time is O(mn) and space used is O(2m) = O(m) \

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 29 / 43

Analyzing Space Efficiency

@ From the m X n matrix M we can construct the actual
alignment (exercise)

@ Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

© Space efficient computation of alignment? More complicated
algorithm — see notes and Kleinberg-Tardos book.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 30/ 43

Part 1l

Longest Common Subsequence

Problem

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 31/43

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

LCS between ABAZDC and BACBAD is l

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 32/43

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

LCS between ABAZDC and BACBAD is 4 via ABAD l

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 32 /43

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

LCS between ABAZDC and BACBAD is 4 via ABAD l

Derive a dynamic programming algorithm for the problem.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 32 /43

Part |11

Maximum Weighted Independent Set

in Trees

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 33 /43

Maximum Weight Independent Set Problem

Input Graph G = (V/, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 34 /43

Maximum Weight Independent Set Problem

Input Graph G = (V/, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: {B, D}

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 34 /43

Maximum Weight Independent Set in a Tree

Input Tree T = (V, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: 77

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 35 /43

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, Vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn)-

© If graph G is arbitrary there was no good ordering that resulted
in a small number of subproblems.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 36 / 43

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, Vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn)-

© If graph G is arbitrary there was no good ordering that resulted
in a small number of subproblems.

What about a tree?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 36 / 43

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, Vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn)-

© If graph G is arbitrary there was no good ordering that resulted
in a small number of subproblems.

What about a tree? Natural candidate for v, is root r of T?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 36 / 43

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum
solution to the whole problem.

Caser € O

1 $(4) 15(L)

25@ U 28(5)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 37 /43

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum
solution to the whole problem.

Case r € O :Then O contains an optimum solution for each subtree
of T hanging at a child of r.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 37 /43

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum
solution to the whole problem.

Case r € O :Then O contains an optimum solution for each subtree
of T hanging at a child of r.

Case r € O : None of the children of r can be in O.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 37 /43

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum

solution to the whole problem.

Case r € O :Then O contains an optimum solution for each subtree
of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 37 /43

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum

solution to the whole problem.

Case r € O :Then O contains an optimum solution for each subtree
of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 37 /43

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum
solution to the whole problem.

Case r € O :Then O contains an optimum solution for each subtree
of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 37 /43

Towards a Recursive Solution

Natural candidate for v,, is root r of T?7? Let O be an optimum
solution to the whole problem.

Case r € O :Then O contains an optimum solution for each subtree
of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? O(n)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 37 /43

Example

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 38 Spring 2020 38 /43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) =

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 39 /43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max v child of » OPT (),
W(U) + Zv grandchild of u OPT(V)

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 39 /43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max v child of » OPT (),
W(U) + Zv grandchild of u OPT(V)

Iterative Algorithm

© To evaluate OPT (u) need to have computed values of all
children and grandchildren of wu.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 39 /43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max v child of » OPT (),
W(U) + Zv grandchild of u OPT(V)

Iterative Algorithm

© To evaluate OPT (u) need to have computed values of all
children and grandchildren of wu.

Compute OPT (u) bottom up.
© What is an ordering of nodes of a tree T to achieve above?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 39 /43

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max {Zv child of u OPT (v),

W(U) + Zv grandchild of u OPT(V)

Iterative Algorithm

© To evaluate OPT (u) need to have computed values of all

children and grandchildren of wu.

Compute OPT (u) bottom up.

© What is an ordering of nodes of a tree T to achieve above?

Post-order traversal of a tree.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374

Spring 2020

39 / 43

OPT(U) = max Zv child of u OPT(V)’
w(u) + >, candehitd of w OPT(V)

Post-order traversal: £ L- A K S'j% B N

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 40 / 43

lterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T(v).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 41 /43

lterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T(v).

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; M[Vj]a
w(vi) + Zvj grandenind of v; MYl
return M[v,] (x Note: v, is the root of T *)

M|[v;] = max

: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 41 / 43

lterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T(v).

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; M[Vj]a
w(vi) + Zvj grandenind of v; MYl
return M[v,] (x Note: v, is the root of T *)

M|[v;] = max

Space:

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 41 /43

lterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T(v).

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; M[Vj]a
w(vi) + Zvj grandenind of v; MYl
return M[v,] (x Note: v, is the root of T *)

M|[v;] = max

Space: O(n) to store the value at each node of T
Running time:

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 41 /43

lterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T(v).

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; M[Vj]a
w(vi) + Zvj grandenind of v; MYl
return M[v,] (x Note: v, is the root of T *)

M|[v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take O(n) time and
there are n evaluations.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 41 /43

lterative Algorithm

Declare M[1..n]. M[v] stores the max weighted independent set value for tree
T(v).

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj child of v; M[Vj]a
w(vi) + Zvj grandenind of v; MYl
return M[v,] (x Note: v, is the root of T *)

M|[v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take O(n) time and
there are n evaluations.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 41 /43

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 42 Spring 2020 42 / 43

Better running time: A value M[d] is accessed only by a (parent)
and r (grand parent) = O(n).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 42 / 43

Takeaway Points

© Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

@ Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

© The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 43 / 43

	Edit Distance and Sequence Alignment
	Longest Common Subsequence Problem
	Maximum Weighted Independent Set in Trees

