CS/ECE 374 A: Algorithms \& Models of Computation, Spring 2020

Proving Non-regularity

Lecture 7
Feb 11, 2020

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language?

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each regular expression \boldsymbol{R} can be represented as a string over $\boldsymbol{\Sigma} \cup\{*,+,()$,$\} .$

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each regular expression \boldsymbol{R} can be represented as a string over $\boldsymbol{\Sigma} \cup\{*,+,()$,$\} .$
- Hence number of regular languages is countably infinite

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each regular expression \boldsymbol{R} can be represented as a string over $\boldsymbol{\Sigma} \cup\{*,+,()$,$\} .$
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each regular expression \boldsymbol{R} can be represented as a string over $\boldsymbol{\Sigma} \cup\{*,+,()$,$\} .$
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
 L is not regular.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
 L is not regular.

Question: Proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular.
Question: Proof?

Intution: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular.
Question: Proof?

Intution: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Intuition: How DFA Works

For $\boldsymbol{x}=11$ and $\boldsymbol{y}=1000$

- What are $\delta^{*}(0, x)$ and $\delta^{*}(0, y)$?
- $\exists \boldsymbol{w} \in\{0, \mathbf{1}\}^{*}$ such that $\boldsymbol{x w}$ is accepted but $\boldsymbol{y w}$ is not?

Intuition: How DFA Works

For $\boldsymbol{x}=\mathbf{1 1}$ and $\boldsymbol{y}=1000$
"Same

- What are $\delta^{*}(0, x)$ and $\delta^{*}(0, y)$?
- $\exists \boldsymbol{w} \in\{0,1\}^{*}$ such that $\boldsymbol{x} \boldsymbol{w}$ is accepted but $\boldsymbol{y} \boldsymbol{w}$ is not?

For $\boldsymbol{x}=\mathbf{1 1}$ and $\boldsymbol{y}=1001 \quad$ "different" Distinguishable

- What are $\delta^{*}(\mathbf{0}, \boldsymbol{x})$ and $\delta^{*}(\mathbf{0}, \boldsymbol{y})$? $\quad W=11$
- $\exists \boldsymbol{w} \in\{0, \mathbf{1}\}^{*}$ such that $\boldsymbol{x w}$ is accepted but $\boldsymbol{y w}$ is not?

Proof by Contradiction

Thm: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is not regular.

Proof by Contradiction

Thm: $L=\left\{0^{k} \mathbf{1}^{k} \mid k \geq 0\right\}$ is not regular.

- Suppose \boldsymbol{L} is regular. Then there is a DFA \boldsymbol{M} such that $L(M)=\boldsymbol{L}$.
- Let $M=(\boldsymbol{Q},\{\mathbf{0}, \mathbf{1}\}, \delta, \boldsymbol{s}, \boldsymbol{A})$ where $|\boldsymbol{Q}|=\boldsymbol{n}$.

Proof by Contradiction

Thm: $L=\left\{\mathbf{0}^{k} \mathbf{1}^{k} \mid k \geq \mathbf{0}\right\}$ is not regular.

- Suppose \boldsymbol{L} is regular. Then there is a DFA \boldsymbol{M} such that $\boldsymbol{L}(\boldsymbol{M})=\boldsymbol{L}$.
- Let $M=(\boldsymbol{Q},\{\mathbf{0}, \mathbf{1}\}, \delta, \boldsymbol{s}, \boldsymbol{A})$ where $|\boldsymbol{Q}|=\boldsymbol{n}$.

Consider strings $\epsilon, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.

Proof by Contradiction

Thm: $L=\left\{0^{k} \mathbf{1}^{k} \mid k \geq 0\right\}$ is not regular.

- Suppose \boldsymbol{L} is regular. Then there is a DFA \boldsymbol{M} such that $\boldsymbol{L}(\boldsymbol{M})=\boldsymbol{L}$.
- Let $M=(\boldsymbol{Q},\{\mathbf{0}, \mathbf{1}\}, \delta, \boldsymbol{s}, \boldsymbol{A})$ where $|\boldsymbol{Q}|=\boldsymbol{n}$.

Consider strings $\epsilon, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.
What is the behavior of M on these strings? Let $\boldsymbol{q}_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$. That is, \boldsymbol{M} is in the same state after reading $\boldsymbol{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.

Proof by Contradiction

Thm: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is not regular.

- Suppose L is regular. Then there is a DFA M such that $L(M)=\boldsymbol{L}$.
- Let $M=(\boldsymbol{Q},\{\mathbf{0}, \mathbf{1}\}, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ where $|\boldsymbol{Q}|=\boldsymbol{n}$.

Consider strings $\boldsymbol{\epsilon}, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.
What is the behavior of M on these strings? Let $\boldsymbol{q}_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$. That is, \boldsymbol{M} is in the same state after reading $\boldsymbol{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.
\boldsymbol{M} should accept $\mathbf{0}^{\boldsymbol{i}} \mathbf{1}^{\boldsymbol{i}}$ but then it will also accept $\boldsymbol{0}^{\boldsymbol{j}} \mathbf{1}^{\boldsymbol{i}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.

Proof by Contradiction

Thm: $L=\left\{0^{k} \mathbf{1}^{k} \mid k \geq 0\right\}$ is not regular.

- Suppose L is regular. Then there is a DFA M such that $L(M)=\boldsymbol{L}$.
- Let $M=(Q,\{\mathbf{0}, \mathbf{1}\}, \delta, \boldsymbol{s}, A)$ where $|Q|=\boldsymbol{n}$.

Consider strings $\epsilon, \mathbf{0 , 0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.
What is the behavior of M on these strings? Let $\boldsymbol{q}_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$. That is, \boldsymbol{M} is in the same state after reading $\boldsymbol{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.
\boldsymbol{M} should accept $\mathbf{0}^{\boldsymbol{i}} \mathbf{1}^{\boldsymbol{i}}$ but then it will also accept $\boldsymbol{0}^{\boldsymbol{j}} \mathbf{1}^{\boldsymbol{i}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$. This contradicts the fact that \boldsymbol{M} accepts \boldsymbol{L}. Thus, there is no DFA for \boldsymbol{L}.

Generalizing the argument

Definition

For a language L over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and \boldsymbol{y} are distinguishable with respect to L if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in L. In other words either $x w \in L, y w \notin L$ or $x w \notin L, y w \in L$.

Generalizing the argument

Definition

For a language L over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and \boldsymbol{y} are distinguishable with respect to \boldsymbol{L} if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in L. In other words either $x w \in L, y w \notin L$ or $x w \notin L, y w \in L$.
$\boldsymbol{x}, \boldsymbol{y}$ are indistinguishable with respect to \boldsymbol{L} if there is no such \boldsymbol{w}.

Generalizing the argument

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and \boldsymbol{y} are distinguishable with respect to L if there is a string $w \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in L. In other words either $x w \in L, y w \notin L$ or $x w \notin L, y w \in L$.
$\boldsymbol{x}, \boldsymbol{y}$ are indistinguishable with respect to L if there is no such \boldsymbol{w}.
Example: If $\boldsymbol{i} \neq \boldsymbol{j}, \mathbf{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Generalizing the argument

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and \boldsymbol{y} are distinguishable with respect to \boldsymbol{L} if there is a string $w \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in L. In other words either $x w \in L, y w \notin L$ or $x w \notin L, y w \in L$.
$\boldsymbol{x}, \boldsymbol{y}$ are indistinguishable with respect to L if there is no such \boldsymbol{w}.
Example: If $\boldsymbol{i} \neq \boldsymbol{j}, \mathbf{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Example: 000 and 0000 are indistinguishable with respect to the language $L=\{\boldsymbol{w} \mid \boldsymbol{w}$ has $\mathbf{0 0}$ as a substring $\}$

Wee Lemma

Lemma

Suppose $L=L(M)$ for some DFA $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Wee Lemma

Lemma

Suppose $L=L(M)$ for some DFA $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Since $\boldsymbol{x}, \boldsymbol{y}$ are distinguishable let \boldsymbol{w} be the distinguishing suffix. If $\delta^{*}(s, x)=\delta^{*}(s, y)$ then M will either accept both the strings $\boldsymbol{x w}, \boldsymbol{y w}$, or reject both. But exactly one of them is in \boldsymbol{L}, a contradiction.

Fooling Sets

Definition

For a language L over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for L if every pair of distinct strings $x, y \in F$ are distinguishable.

Fooling Sets

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for L if every pair of distinct strings $x, y \in F$ are distinguishable.

Example 1: For $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}, F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set.

Fooling Sets

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for L if every pair of distinct strings $x, y \in F$ are distinguishable.
Example 1: For $L=\left\{0^{k} 1^{k} \mid \boldsymbol{k} \geq 0\right\}, F=\left\{0^{i} \mid \boldsymbol{i} \geq 0\right\}$ is a fooling set.
Example 2: Multiple of 5. $x=0^{10}, y=0^{100} \in F$

Fooling Sets

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for L if every pair of distinct strings $x, y \in F$ are distinguishable.

Example 1: For $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}, F=\left\{0^{i} \mid \boldsymbol{i} \geq 0\right\}$ is a fooling set.
Example 2: Multiple of 5.

$$
F=\{0,1,10,11,100\} .
$$

Fooling Sets

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for L if every pair of distinct strings $x, y \in F$ are distinguishable.

Example 1: For $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}, F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set.
Example 2: Multiple of 5.

$F=\{\mathbf{0}, \mathbf{1}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 0 0}\}$. Can we add more to this set?

Fooling Set Size vs Size of DFA

Theorem

Suppose \boldsymbol{F} is a fooling set for \mathbf{L}. If \boldsymbol{F} is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof.

Suppose there is a DFA $\boldsymbol{M}=(\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ that accepts \boldsymbol{L}. Let $|\boldsymbol{Q}|=\boldsymbol{n}$.

Fooling Set Size vs Size of DFA

Theorem

Suppose F is a fooling set for \mathbf{L}. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof.

Suppose there is a DFA $\boldsymbol{M}=(\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ that accepts \boldsymbol{L}. Let $|\boldsymbol{Q}|=\boldsymbol{n}$. If $\boldsymbol{n}<|\boldsymbol{F}|$ then by pigeon hole principle there are two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{F}, \boldsymbol{x} \neq \boldsymbol{y}$ such that $\delta^{*}(s, x)=\delta^{*}(s, y)$ but $\boldsymbol{x}, \boldsymbol{y}$ are distinguishable.

Fooling Set Size vs Size of DFA

Theorem

Suppose \boldsymbol{F} is a fooling set for \mathbf{L}. If \boldsymbol{F} is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof.

Suppose there is a DFA $\boldsymbol{M}=(\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ that accepts \boldsymbol{L}. Let $|\boldsymbol{Q}|=\boldsymbol{n}$. If $\boldsymbol{n}<|\boldsymbol{F}|$ then by pigeon hole principle there are two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{F}, \boldsymbol{x} \neq \boldsymbol{y}$ such that $\delta^{*}(s, x)=\delta^{*}(s, y)$ but $\boldsymbol{x}, \boldsymbol{y}$ are distinguishable.

Implies that there is \boldsymbol{w} such that exaclty one of $\boldsymbol{x w}, \boldsymbol{y w}$ is in \boldsymbol{L}. However, M's behaviour on $\boldsymbol{x w}$ and $\boldsymbol{y} \boldsymbol{w}$ is exacly the same and hence \boldsymbol{M} will accept both $x w, y w$ or reject both. A contradiction.

Infinite Fooling Sets

Theorem

Suppose F is a fooling set for \mathbf{L}. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Corollary

If L has an infinite fooling set F then L is not regular.

Infinite Fooling Sets

Theorem

Suppose F is a fooling set for \mathbf{L}. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Corollary

If \mathbf{L} has an infinite fooling set \boldsymbol{F} then \mathbf{L} is not regular.

Proof.

Suppose for contradiction that $L=L(M)$ for some DFA M with n states.
Any subset F^{\prime} of F is a fooling set. (Why?) Pick $F^{\prime} \subseteq F$ arbitrarily such that $\left|\boldsymbol{F}^{\prime}\right|>\boldsymbol{n}$. By preceding theorem, we obtain a contradiction.

Examples

- $\left.L_{1} \underline{0^{k} 1^{k}} \mid k \geq 0\right\}$

$$
\begin{aligned}
& k \geq 0\} \\
& F_{1}=\left\{0^{*}\right\}
\end{aligned} \quad\left(0^{i}, 0^{j}\right) \in F \times F \quad w=1^{i}
$$

- L_{q} qbitstrings with equal number of 0 s and 1 s$\}$

$$
\begin{aligned}
& 1010 \quad 110100 \\
& F_{2}=\left\{(001)^{*}\right\} \quad F_{2}=\left\{0^{*}\right\} \\
& \text { - }\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\} \\
& F_{3}=0^{*} \\
& \text { - }\left\{0^{k^{2}} \mid k \geq 0\right\} \\
& F_{h}=\left\{0^{k} \mid k \geqslant 3\right\} \quad\left(0^{i}, 0^{j}\right) \quad \omega=0^{j-j} \\
& \sigma^{i} 0^{j^{2}-S} \nexists k, j 2-j+i=k^{2}
\end{aligned}
$$

How to pick a fooling set

How do we pick a fooling set \boldsymbol{F} ?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L.
For example if $L=\left\{\mathbf{0}^{k} \mathbf{1}^{k} \mid k \geq \mathbf{0}\right\}$ do not pick $\mathbf{1}$ and $\mathbf{1 0}$ (say). Why?

Part I

Non-regularity via closure properties

Non-regularity via closure properties

$L=\{$ bitstrings with equal number of 0 s and 1 s$\}$
$L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we know that \boldsymbol{L}^{\prime} is non-regular. Can we show that \boldsymbol{L} is non-regular without using the fooling set argument from scratch?

Non-regularity via closure properties

$L=\{$ bitstrings with equal number of $0 s$ and $1 s\}$

$$
L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

Suppose we know that \boldsymbol{L}^{\prime} is non-regular. Can we show that \boldsymbol{L} is non-regular without using the fooling set argument from scratch?

$$
L^{\prime}=L \cap L\left(0^{*} 1^{*}\right)
$$

Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Non-regularity via closure properties

$L=\{$ bitstrings with equal number of $0 s$ and $1 s\}$

$$
L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

Suppose we know that \boldsymbol{L}^{\prime} is non-regular. Can we show that \boldsymbol{L} is non-regular without using the fooling set argument from scratch?

Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Suppose \boldsymbol{L} is regular. Then since $\mathbf{L}\left(\mathbf{0}^{*} \mathbf{1}^{*}\right)$ is regular, and regular languages are closed under intersection, \boldsymbol{L}^{\prime} also would be regular. But we know L^{\prime} is not regular, a contradiction.

Non-regularity via closure properties

General recipe:

Proving non-regularity: Summary

- DFAs have fixed memory. Any language that requires memory that grows with input size is not regular. Not always easy to tell!
- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

Part II

Myhill-Nerode Theorem

Intuition: DFA size vs Fooling set

$$
L_{k}=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w \text { has a } \mathbf{1} k \text { positions from the end }\right\}
$$

Intuition: DFA size vs Fooling set

$L_{k}=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid \boldsymbol{w}\right.$ has a $\mathbf{1} k$ positions from the end $\}$ Recall that L_{k} is accepted by a NFA N with $k+1$ states.

$$
{ }^{0,1}(0) \xrightarrow{1}(1)^{0.1}(2)-\quad 0,1(k-1)
$$

Intuition: DFA size vs Fooling set

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $\mathbf{1} k$ positions from the end $\}$ Recall that L_{k} is accepted by a NFA N with $k+1$ states.

Theorem

Every DFA that accepts $\mathbf{L}_{\boldsymbol{k}}$ has at least $\mathbf{2}^{\boldsymbol{k}}$ states.

Intuition: DFA size vs Fooling set

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $\mathbf{1} k$ positions from the end $\}$ Recall that L_{k} is accepted by a NFA N with $k+1$ states.

Theorem

Every DFA that accepts $\mathbf{L}_{\boldsymbol{k}}$ has at least $\mathbf{2}^{\boldsymbol{k}}$ states.

> Claim
> $F=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}

Why?

Intuition: DFA size vs Fooling set

$L_{k}=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ has a $\mathbf{1} k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA N with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least $\mathbf{2}^{k}$ states.

Claim

$F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}.
Why?

- Suppose $a_{1} a_{2} \cdot \stackrel{\prime \prime}{a_{i}} \cdot a_{k}$ and $b_{1} b_{2} \cdot \frac{6}{\mathbf{b}} \cdot \boldsymbol{b}_{k}$ are two distinct bitstrings of length k
- Let \boldsymbol{i} be first index where $\boldsymbol{a}_{\boldsymbol{i}} \neq \boldsymbol{b}_{\boldsymbol{i}}$

- $y=0^{i-1}$ is a distinguishing suffix for the two strings

Indistinguishability

Recall:

Definition

For a language L over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and \boldsymbol{y} are distinguishable with respect to L if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in $L . x, y$ are indistinguishable with respect to L if there is no such \boldsymbol{w}.

Given language L over $\boldsymbol{\Sigma}$ define a relation $\equiv \boldsymbol{\iota}$ over strings in $\boldsymbol{\Sigma}^{*}$ as follows: $\boldsymbol{x} \equiv \boldsymbol{L} \boldsymbol{y}$ iff \boldsymbol{x} and \boldsymbol{y} are indistinguishable with respect to \boldsymbol{L}.

Indistinguishability

Recall:

Definition

For a language L over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and \boldsymbol{y} are distinguishable with respect to L if there is a string $w \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in $L . x, y$ are indistinguishable with respect to L if there is no such w.

Given language L over $\boldsymbol{\Sigma}$ define a relation $\equiv \boldsymbol{L}$ over strings in $\boldsymbol{\Sigma}^{*}$ as follows: $x \equiv\llcorner y$ iff x and y are indistinguishable with respect to L.

Claim

\equiv_{L} is an equivalence relation over $\boldsymbol{\Sigma}^{*}$.
Therefore, $\equiv_{\llcorner }$partitions $\boldsymbol{\Sigma}^{*}$ into a collection of equivalence classes X_{1}, X_{2}, \ldots,

Claim

\equiv_{L} is an equivalence relation over $\boldsymbol{\Sigma}^{*}$.
Therefore, $\equiv\left\llcorner\right.$ partitions $\boldsymbol{\Sigma}^{*}$ into a collection of equivalence classes.

Claim

Let x, y be two distinct strings. If x, y belong to the same equivalence class of \equiv_{ι} then x, y are indistinguishable. Otherwise they are distinguishable.

Corollary
 If $\equiv_{\llcorner }$is finite with \boldsymbol{n} equivalence classes then there is a fooling set F of size \boldsymbol{n} for \boldsymbol{L}. If \equiv_{L} is infinite then there is an infinite fooling set for L.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is is regular if and only if \equiv_{L} has a finite number of equivalence classes. If $\equiv\llcorner$ is finite with \boldsymbol{n} equivalence classes then there is a DFA M accepting L with exactly n states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$ and M^{\prime} has the fewest possible states among all such DFAs.

