
CS/ECE 374 A: Algorithms & Models of

Computation, Spring 2020

Graph Search
Lecture 17
March 24, 2020

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 1 Spring 2020 1 / 44

Part I

Graph Basics

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 2 Spring 2020 2 / 44

Why Graphs?

1 Graphs help model networks which are ubiquitous: transportation
networks (rail, roads, airways), social networks (interpersonal
relationships), information networks (web page links), and many
problems that don’t even look like graph problems.

2 Fundamental objects in Computer Science, Optimization,
Combinatorics

3 Many important and useful optimization problems are graph
problems

4 Graph theory: elegant, fun and deep mathematics

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 3 Spring 2020 3 / 44

Graph

Definition
An undirected (simple) graph
G = (V ,E) is a 2-tuple:

1 V is a set of vertices (also referred
to as nodes/points)

2 E is a set of edges where each edge
e ∈ E is a set of the form {u, v}
with u, v ∈ V and u 6= v .

Example

In figure, G = (V ,E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7},
{3, 8}, {4, 5}, {5, 6}, {7, 8}}.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 4 Spring 2020 4 / 44

Graph

Definition
An undirected (simple) graph
G = (V ,E) is a 2-tuple:

1 V is a set of vertices (also referred
to as nodes/points)

2 E is a set of edges where each edge
e ∈ E is a set of the form {u, v}
with u, v ∈ V and u 6= v .

Example

In figure, G = (V ,E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7},
{3, 8}, {4, 5}, {5, 6}, {7, 8}}.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 4 Spring 2020 4 / 44

Notation and Convention

Notation
An edge in an undirected graphs is an unordered pair of nodes and
hence it is a set. Conventionally we use (u, v) for {u, v} when it is
clear from the context that the graph is undirected.

1 u and v are the end points of an edge {u, v}

2 Multi-graphs allow

1 loops
2 multi-edges

3 In this class we will assume that a graph is a simple graph unless explicitly
stated otherwise.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 5 Spring 2020 5 / 44

Notation and Convention

Notation
An edge in an undirected graphs is an unordered pair of nodes and
hence it is a set. Conventionally we use (u, v) for {u, v} when it is
clear from the context that the graph is undirected.

1 u and v are the end points of an edge {u, v}

2 Multi-graphs allow

1 loops
2 multi-edges

3 In this class we will assume that a graph is a simple graph unless explicitly
stated otherwise.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 5 Spring 2020 5 / 44

Graph Representation I

Adjacency Matrix
Represent G = (V ,E) with n vertices and m edges using a n × n adjacency
matrix A where

1 A[i , j] = A[j , i] = 1 if {i , j} ∈ E and A[i , j] = A[j , i] = 0 if
{i , j} 6∈ E .

2 Advantage: can check if {i , j} ∈ E in O(1) time

3 Disadvantage: needs Ω(n2) space even when m � n2

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 6 Spring 2020 6 / 44

Graph Representation II

Adjacency Lists

G = (V ,E) with n vertices and m edges:
1 For each u ∈ V store list Adj(u) = {v | {u, v} ∈ E}, that is

neighbors of u.

Sometimes store edges incident to u instead.

2 Advantage: space is O(m + n)
3 Disadvantage: cannot check in O(1) time if {i , j} ∈ E

1 By sorting each list, one can achieve O(log n) time
2 By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 7 Spring 2020 7 / 44

Graph Representation II

Adjacency Lists

G = (V ,E) with n vertices and m edges:
1 For each u ∈ V store list Adj(u) = {v | {u, v} ∈ E}, that is

neighbors of u.

Sometimes store edges incident to u instead.

2 Advantage: space is O(m + n)
3 Disadvantage: cannot check in O(1) time if {i , j} ∈ E

1 By sorting each list, one can achieve O(log n) time
2 By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 7 Spring 2020 7 / 44

A Concrete Representation

Assume vertices are numbered as {1, 2, . . . , n}, and edges as
{1, 2, . . . ,m}.

Edges stored in an array/list of size m. E [j] is j ’th edge with info on end
points which are integers in range 1 to n.

Array Adj of size n for adjacency lists. Adj [i] points to adjacency list of
vertex i . Adj [i] is a list of edge indices in range 1 to m.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 8 Spring 2020 8 / 44

A Concrete Representation

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 9 Spring 2020 9 / 44

A Concrete Representation: Advantages

Edges are explicitly represented/numbered. Scanning/processing
all edges easy to do.

Representation easily supports multigraphs including self-loops.

Explicit numbering of vertices and edges allows use of arrays:
O(1)-time operations are easy to understand.

Can also implement via pointer based lists for certain dynamic
graph settings.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 10 Spring 2020 10 / 44

Connectivity

Given a graph G = (V ,E):

1 Path: sequence of distinct vertices v1, v2, . . . , vk

such that {vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1.

The path is from v1 to vk .
Length of the path = # edges = k − 1
A single vertex u is a path of length 0.

2 A vertex u is connected to v if there is a path from
u to v .

3 Connected component of u, con(u): the set of all
vertices connected to u. Is u ∈ con(u)?

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 11 Spring 2020 11 / 44

Connectivity

Given a graph G = (V ,E):

1 Path: sequence of distinct vertices v1, v2, . . . , vk

such that {vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1.

The path is from v1 to vk .
Length of the path = # edges = k − 1
A single vertex u is a path of length 0.

2 A vertex u is connected to v if there is a path from
u to v .

3 Connected component of u, con(u): the set of all
vertices connected to u. Is u ∈ con(u)?

4 Cycle: in addition, {v1, vk} ∈ E .
Note: Single vertex is not a cycle.
Caveat: Some times people use the term cycle to
also allow vertices to be repeated; we will use the
term tour.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 12 Spring 2020 12 / 44

Connectivity contd

Define a relation C on V × V as uCv if
u is connected to v

1 In undirected graphs, connectivity is
a reflexive, symmetric, and transitive
relation. Connected components are
the equivalence classes.

2 Graph is connected if only one
connected component.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug
O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 13 Spring 2020 13 / 44

Connectivity Problems

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?

2 Given G and node u, find all nodes that are connected to u.

3 Find all connected components of G .

Can be accomplished in O(m + n) time using Breadth-First Search
(BFS) or Depth-First Search (DFS).
BFS and DFS are refinements of a basic search procedure which is
good to understand on its own.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 14 Spring 2020 14 / 44

Connectivity Problems

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?

2 Given G and node u, find all nodes that are connected to u.

3 Find all connected components of G .

Can be accomplished in O(m + n) time using Breadth-First Search
(BFS) or Depth-First Search (DFS).
BFS and DFS are refinements of a basic search procedure which is
good to understand on its own.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 14 Spring 2020 14 / 44

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S

Add u to ToExplore and to S, Visited [u] = TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S

Output S

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 15 Spring 2020 15 / 44

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore

for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S

Output S

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 15 Spring 2020 15 / 44

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S

Output S

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 15 Spring 2020 15 / 44

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE

Add y to ToExplore
Add y to S

Output S

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 15 Spring 2020 15 / 44

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S

Output S

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 15 Spring 2020 15 / 44

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S

Output S

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 15 Spring 2020 15 / 44

Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 16 Spring 2020 16 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Termination and runtime:
Howmany times do we add a node v to ToExplore? at most Once! Only
if Visited [v] is False. It is then switched to TRUE and never changed
after that. Algorithm terminates in at most n iterations of while loop.

Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)
If v ∈ S then v ∈ ToExplore at some point and every edge incident on v
was explored⇒ no edges in G leave S . Hence no node in V − S is in
con(u).
Thus S = con(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Termination and runtime:
Howmany times do we add a node v to ToExplore?

at most Once! Only
if Visited [v] is False. It is then switched to TRUE and never changed
after that. Algorithm terminates in at most n iterations of while loop.

Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)
If v ∈ S then v ∈ ToExplore at some point and every edge incident on v
was explored⇒ no edges in G leave S . Hence no node in V − S is in
con(u).
Thus S = con(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Termination and runtime:
Howmany times do we add a node v to ToExplore? at most Once! Only
if Visited [v] is False. It is then switched to TRUE and never changed
after that.

Algorithm terminates in at most n iterations of while loop.

Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)
If v ∈ S then v ∈ ToExplore at some point and every edge incident on v
was explored⇒ no edges in G leave S . Hence no node in V − S is in
con(u).
Thus S = con(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Termination and runtime:
Howmany times do we add a node v to ToExplore? at most Once! Only
if Visited [v] is False. It is then switched to TRUE and never changed
after that. Algorithm terminates in at most n iterations of while loop.

Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)
If v ∈ S then v ∈ ToExplore at some point and every edge incident on v
was explored⇒ no edges in G leave S . Hence no node in V − S is in
con(u).
Thus S = con(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Termination and runtime:
Howmany times do we add a node v to ToExplore? at most Once! Only
if Visited [v] is False. It is then switched to TRUE and never changed
after that. Algorithm terminates in at most n iterations of while loop.

Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)

If v ∈ S then v ∈ ToExplore at some point and every edge incident on v
was explored⇒ no edges in G leave S . Hence no node in V − S is in
con(u).
Thus S = con(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Termination and runtime:
Howmany times do we add a node v to ToExplore? at most Once! Only
if Visited [v] is False. It is then switched to TRUE and never changed
after that. Algorithm terminates in at most n iterations of while loop.

Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)

If v ∈ S then v ∈ ToExplore at some point and every edge incident on v
was explored⇒ no edges in G leave S . Hence no node in V − S is in
con(u).
Thus S = con(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Termination and runtime:
Howmany times do we add a node v to ToExplore? at most Once! Only
if Visited [v] is False. It is then switched to TRUE and never changed
after that. Algorithm terminates in at most n iterations of while loop.

Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)
If v ∈ S then v ∈ ToExplore at some point and every edge incident on v
was explored⇒ no edges in G leave S .

Hence no node in V − S is in
con(u).
Thus S = con(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Termination and runtime:
Howmany times do we add a node v to ToExplore? at most Once! Only
if Visited [v] is False. It is then switched to TRUE and never changed
after that. Algorithm terminates in at most n iterations of while loop.

Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)
If v ∈ S then v ∈ ToExplore at some point and every edge incident on v
was explored⇒ no edges in G leave S . Hence no node in V − S is in
con(u).
Thus S = con(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 17 Spring 2020 17 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates in O(m + n) time.

Proof: easy exercise

BFS and DFS are special case of BasicSearch.

1 Breadth First Search (BFS): use queue data structure to
implementing the list ToExplore

2 Depth First Search (DFS): use stack data structure to
implement the list ToExplore

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 18 Spring 2020 18 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates in O(m + n) time.

Proof: easy exercise

BFS and DFS are special case of BasicSearch.

1 Breadth First Search (BFS): use queue data structure to
implementing the list ToExplore

2 Depth First Search (DFS): use stack data structure to
implement the list ToExplore

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 18 Spring 2020 18 / 44

Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):
array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S
Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 19 Spring 2020 19 / 44

Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):
array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S
Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u
O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 19 Spring 2020 19 / 44

Finding all connected components

Exercise: Modify Basic Search to find all connected components of
a given graph G in O(m + n) time.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 20 Spring 2020 20 / 44

Part II

Directed Graphs and Decomposition

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 21 Spring 2020 21 / 44

Directed Graphs

Definition
A directed graph G = (V ,E)
consists of

1 set of vertices/nodes V
and

2 a set of edges/arcs
E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

An edge is an ordered pair of vertices. (u, v) different from (v , u).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 22 Spring 2020 22 / 44

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1 Road networks with one-way streets.

2 Web-link graph: vertices are web-pages and there is an edge
from page p to page p′ if p has a link to p′. Web graphs used
by Google with PageRank algorithm to rank pages.

3 Dependency graphs in variety of applications: link from x to y if
y depends on x . Make files for compiling programs.

4 Program Analysis: functions/procedures are vertices and there is
an edge from x to y if x calls y .

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 23 Spring 2020 23 / 44

Directed Graph Representation

Graph G = (V ,E) with n vertices and m edges:

1 Adjacency Matrix: n × n asymmetric matrix A. A[u, v] = 1
if (u, v) ∈ E and A[u, v] = 0 if (u, v) 6∈ E . A[u, v] is not
same as A[v , u].

2 Adjacency Lists: for each node u, Out(u) (also referred to as
Adj(u)) and In(u) store out-going edges and in-coming edges
from u.

Default representation is adjacency lists.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 24 Spring 2020 24 / 44

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs
easily extends to directed graphs.

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 25 Spring 2020 25 / 44

Directed Connectivity

Given a graph G = (V ,E):

1 A (directed) path is a sequence of distinct vertices v1, v2, . . . , vk such
that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1
and the path is from v1 to vk .
By convention, a single node u is a path of length 0.

2 A vertex u can reach v if there is a path from u to v .

3 Let rch(u) be the set of all vertices reachable from u.

4 A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that
(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .
By convention, a single node u is not a cycle.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 26 Spring 2020 26 / 44

Directed Connectivity

Given a graph G = (V ,E):

1 A (directed) path is a sequence of distinct vertices v1, v2, . . . , vk such
that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1
and the path is from v1 to vk .
By convention, a single node u is a path of length 0.

2 A vertex u can reach v if there is a path from u to v .

3 Let rch(u) be the set of all vertices reachable from u.

4 A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that
(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .
By convention, a single node u is not a cycle.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 26 Spring 2020 26 / 44

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Questions:

1 Is there a notion of connected components?

2 How do we understand connectivity in directed graphs?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 27 Spring 2020 27 / 44

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Questions:

1 Is there a notion of connected components?

2 How do we understand connectivity in directed graphs?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 27 Spring 2020 27 / 44

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 28 Spring 2020 28 / 44

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 28 Spring 2020 28 / 44

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 28 Spring 2020 28 / 44

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 28 Spring 2020 28 / 44

Strongly Connected Components: Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 29 Spring 2020 29 / 44

Directed Graph Connectivity Problems

1 Given G and nodes u and v , can u reach v?

2 Given G and u, compute rch(u).

3 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

4 Find the strongly connected component containing node u, that
is SCC(u).

5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G .

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 30 Spring 2020 30 / 44

Exercise

Prove the following:

Proposition

Let S = rch(u). There is no edge (x, y) ∈ E where x ∈ S and
y 6∈ S .

Describe an example where rch(u) 6= V and there are edges from
V \ rch(u) to rch(u).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 31 Spring 2020 31 / 44

Basic Graph Search in Directed Graphs

Given G = (V ,E) a directed graph and vertex u ∈ V . Let n = |V |.

Explore(G,u):
array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do (edge x → y)

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S
Add y to T with edge (x, y)

Output S

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 32 Spring 2020 32 / 44

Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 33 Spring 2020 33 / 44

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = rch(u).

Proof Sketch.
Termination and run-time:

A node is added to ToExplore only if Visited [v] is FALSE . After that
Visited [v] is immediately set to TRUE and is never changed. Hence, it is
explored at most once. Thus algorithm terminates in at most n iterations of
while loop.
Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ rch(u)
If v ∈ S then v ∈ ToExplore and every outgoing edge from v is explored⇒

no edge leaves S .

Hence no node in V − S is in rch(u).
Caveat: In directed graphs edges can enter S .
Thus S = rch(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 34 Spring 2020 34 / 44

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = rch(u).

Proof Sketch.
Termination and run-time:

A node is added to ToExplore only if Visited [v] is FALSE . After that
Visited [v] is immediately set to TRUE and is never changed. Hence, it is
explored at most once. Thus algorithm terminates in at most n iterations of
while loop.
Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ rch(u)
If v ∈ S then v ∈ ToExplore and every outgoing edge from v is explored⇒

no edge leaves S . Hence no node in V − S is in rch(u).

Caveat: In directed graphs edges can enter S .
Thus S = rch(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 34 Spring 2020 34 / 44

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = rch(u).

Proof Sketch.
Termination and run-time:

A node is added to ToExplore only if Visited [v] is FALSE . After that
Visited [v] is immediately set to TRUE and is never changed. Hence, it is
explored at most once. Thus algorithm terminates in at most n iterations of
while loop.
Correctness:
By induction on iterations, can show v ∈ S ⇒ v ∈ rch(u)
If v ∈ S then v ∈ ToExplore and every outgoing edge from v is explored⇒

no edge leaves S . Hence no node in V − S is in rch(u).
Caveat: In directed graphs edges can enter S .
Thus S = rch(u) at termination.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 34 Spring 2020 34 / 44

Properties of Basic Search

Proposition

Explore(G , u) terminates in O(m + n) time.

Proposition
T is a search tree rooted at u containing S with edges directed away
from root to leaves.

Proof: easy exercises

BFS and DFS are special case of Basic Search.
1 Breadth First Search (BFS): use queue data structure to

implementing the list ToExplore
2 Depth First Search (DFS): use stack data structure to

implement the list ToExplore
O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 35 Spring 2020 35 / 44

Directed Graph Connectivity Problems

1 Given G and nodes u and v , can u reach v?

2 Given G and u, compute rch(u).

3 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

4 Find the strongly connected component containing node u, that
is SCC(u).

5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G .

First five problems can be solved in O(n + m) time by via Basic
Search (or BFS/DFS). The last one can also be done in linear time
but requires a rather clever DFS based algorithm.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 36 Spring 2020 36 / 44

Directed Graph Connectivity Problems

1 Given G and nodes u and v , can u reach v?

2 Given G and u, compute rch(u).

3 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

4 Find the strongly connected component containing node u, that
is SCC(u).

5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G .

First five problems can be solved in O(n + m) time by via Basic
Search (or BFS/DFS). The last one can also be done in linear time
but requires a rather clever DFS based algorithm.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 36 Spring 2020 36 / 44

Algorithms via Basic Search - I

1 Given G and nodes u and v , can u reach v?

2 Given G and u, compute rch(u).

Use Explore(G , u) to compute rch(u) in O(n + m) time.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 37 Spring 2020 37 / 44

Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise

2 Running time: O(n + m) to obtain G rev from G and
O(n + m) time to compute rch(u) via Basic Search.

If both Out(v) and In(v) are available at each v then no need for
G rev . Instead of Adj(v) = Out(v), just use In(v).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 38 Spring 2020 38 / 44

Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise

2 Running time: O(n + m) to obtain G rev from G and
O(n + m) time to compute rch(u) via Basic Search.

If both Out(v) and In(v) are available at each v then no need for
G rev . Instead of Adj(v) = Out(v), just use In(v).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 38 Spring 2020 38 / 44

Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise

2 Running time: O(n + m) to obtain G rev from G and
O(n + m) time to compute rch(u) via Basic Search.

If both Out(v) and In(v) are available at each v then no need for
G rev . Instead of Adj(v) = Out(v), just use In(v).

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 38 Spring 2020 38 / 44

Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise

2 Running time: O(n + m) to obtain G rev from G and
O(n + m) time to compute rch(u) via Basic Search.

If both Out(v) and In(v) are available at each v then no need for
G rev . Instead of Adj(v) = Out(v), just use In(v).
O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 38 Spring 2020 38 / 44

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}

1 Find the strongly connected component containing node u.
That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 44

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 44

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 44

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 39 Spring 2020 39 / 44

Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 40 Spring 2020 40 / 44

Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 40 Spring 2020 40 / 44

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components
affect the other strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 44

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components
affect the other strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 44

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components
affect the other strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 44

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components
affect the other strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 44

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components
affect the other strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 41 Spring 2020 41 / 44

Modeling Problems as Search

Algorithms Lecture 23: Basic Graph Algorithms [Fa’14]

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

Describe and analyze an algorithm to compute the smallest number of moves required for the
token to reach the last square of the grid.

9. The following puzzle was invented by the infamous Mongolian puzzle-warrior Vidrach Itky Leda in
the year 1473. The puzzle consists of an n⇥ n grid of squares, where each square is labeled with a
positive integer, and two tokens, one red and the other blue. The tokens always lie on distinct
squares of the grid. The tokens start in the top left and bottom right corners of the grid; the goal
of the puzzle is to swap the tokens.

In a single turn, you may move either token up, right, down, or left by a distance determined by
the other token. For example, if the red token is on a square labeled 3, then you may move the
blue token 3 steps up, 3 steps left, 3 steps right, or 3 steps down. However, you may not move a
token off the grid or to the same square as the other token.

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

A five-move solution for a 4⇥ 4 Vidrach Itky Leda puzzle.

Describe and analyze an efficient algorithm that either returns the minimum number of moves
required to solve a given Vidrach Itky Leda puzzle, or correctly reports that the puzzle has no
solution. For example, given the puzzle above, your algorithm would return the number 5.

10. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil racing
game that Jeff played on the bus in 5th grade.4 The game is played with a track drawn on a sheet
of graph paper. The players alternately choose a sequence of grid points that represent the motion
of a car around the track, subject to certain constraints explained below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset of
grid squares is marked as the starting area, and another subset is marked as the finishing area.

4The actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/ for an
excellent online version.

10

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 42 Spring 2020 42 / 44

Undirected vs Directed Connectivity

Consider following problem.

Given undirected graph G = (V ,E).

Two subsets of nodes R ⊂ V (red nodes) and B ⊂ V (blue
nodes). R and B non-empty.

Describe linear-time algorithm to decide whether every red node
can reach every blue node.

How does the problem differ in directed graphs?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 43 Spring 2020 43 / 44

Undirected vs Directed Connectivity

Consider following problem.

Given undirected graph G = (V ,E).

Two subsets of nodes R ⊂ V (red nodes) and B ⊂ V (blue
nodes). R and B non-empty.

Describe linear-time algorithm to decide whether every red node
can reach every blue node.

How does the problem differ in directed graphs?

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 43 Spring 2020 43 / 44

Undirected vs Directed Connectivity

Consider following problem.

Given directed graph G = (V ,E).

Two subsets of nodes R ⊂ V (red nodes) and B ⊂ V (blue
nodes).

Describe linear-time algorithm to decide whether every red node
can be reached by some blue node.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 44 Spring 2020 44 / 44

	Graph Basics
	Directed Graphs and Decomposition
	Introduction
	Algorithms via Basic Search

