
CS/ECE 374 A (Spring 2020)
Old HW1 Problems with Solutions

Problem OLD.1.1: Consider the recurrence

T (n) =

{
T (bn/3c) + T (bn/4c) + T (bn/5c) + T (bn/6c) + n n ≥ 6
1 n < 6.

Prove by induction that T (n) = O(n).

Solution:

Claim 1. For c ≥ 20, and for all n ≥ 1, we have T (n) ≤ cn.

Proof. Base case. For n < 6 the claim holds for any c ≥ 1 by definition.

Induction hypothesis. Let n ≥ 6. Assume that T (k) ≤ ck for all 1 ≤ k < n.

Induction step. We need to prove that T (n) ≤ cn. We know that

T (n) = T (bn/3c) + T (bn/4c) + T (bn/5c) + T (bn/6c) + n

≤ c bn/3c+ c bn/4c) + c bn/5c) + c bn/6c) + n (by the induction hypothesis)

≤ cn/3 + cn/4 + cn/5 + cn/6 + n

≤
(1

3
+

1

4
+

1

5
+

1

6

)
cn + n =

(3

4
+

1

5

)
cn + n =

(19

20
c + 1

)
n ≤ cn,

provided that
19

20
c + 1 ≤ c ⇐⇒ 1 ≤ 1

20
c ⇐⇒ c ≥ 20.

IMPORTANT NOTE: make sure that the “c” in the conclusion from the induction step
(T (n) ≤ cn) is the same as the “c” you start with from the induction hypothesis (T (k) ≤ ck
for k < n). If not (for example, if you could only conclude that T (n) ≤ 1.01cn), then the
whole proof would be incorrect—because the constant factor will “blow up” when we repeat!

This leads to another important piece of advice: don’t use big-O notation inside induction
proofs!

Problem OLD.1.2: Let L ⊆ {0, 1}∗ be a language defined recursively as follows:

• ε ∈ L.

• For all w ∈ L we have 0w1 ∈ L.

• For all x, y ∈ L we have xy ∈ L.

• And these are all the strings that are in L.

1

Prove, by induction, that for any w ∈ L, and any prefix u of w, we have that #0(u) ≥ #1(u).
Here #0(u) is the number of 0 appearing in u (#1(u) is defined similarly). You can use
without proof that #0(xy) = #0(x) + #0(y), for any strings x, y.

Solution:

Proof. The proof is by induction on the length of w.

Base case: If |w| = 0 then w = ε, and then #0(w) = 0 ≥ #1(u) = 0. Since the only prefix
of the empty string is itself, the claim readily follows.

Induction hypothesis: Assume that the claim holds for all strings of length < n.

Induction step: We need to prove the claim for a string w of length n. There are two
possibilities:

• w = 0z1, for some string z ∈ L.

Let u be any prefix of w. If u = ε or u = 0 then the claim clearly holds for u.

If u = w, then

#0(u) = #0(w) = 1 + #0(z) + 0 ≥ 1 + #1(z) = #1(w) = #1(u),

which implies the claim (we used the induction hypothesis on z, since z ∈ L and |z| =
|w| − 2 < n).

So the remaining case is when u = 0z′, where z′ is a prefix of z. In this case,

#0(u) = #0(0z
′) = 1 + #0(z

′) ≥ 1 + #1(z
′) = 1 + #1(u) > #1(u),

Again, we used the induction hypothesis on z, since z ∈ L, z′ is a prefix of z, and z
strictly shorter than w. This implies the claim.

• w = xy, for some strings x, y ∈ L, such that |x|, |y| > 0.

Let u be a prefix of w. If u is a prefix of x, then the claim holds readily by induction.
The remaining case is when u = xz, for some z which is prefix of y. Here,

#0(u) = #0(xz) = #0(x) + #0(z) ≥ #1(x) + #1(z) = #1(u),

by using the induction hypothesis on x (which is a prefix of itself), and on z (which is a
prefix of y), noting that both x and y are strictly shorter than w.

Problem OLD.1.3. Recall that the reversal wR of a string w is defined recursively as follows:

wR :=

{
ε if w = ε

xR • a if w = a · x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

2

(b) Prove w = wR for every palindrome w (according to your recursive definition).

(c) Prove that every string w such that w = wR is a palindrome (according to your recursive
definition).

In parts (b) and (c), you may assume without proof that (x · y)R = yR • xR and (xR)R = x
for all strings x and y.

Solution:

(a) A string w ∈ Σ∗ is a palindrome if and only if either

• w = ε, or

• w = a for some symbol a ∈ Σ, or

• w = axa for some symbol a ∈ Σ and some palindrome x ∈ Σ∗.

(b) Let w be an arbitrary palindrome.

Assume that x = xR for every palindrome x such that |x| < |w|.
There are three cases to consider (mirroring the three cases in the definition):

• If w = ε, then wR = ε by definition, so w = wR.

• If w = a for some symbol a ∈ Σ, then wR = a by definition, so w = wR.

• Suppose w = axa for some symbol a ∈ Σ and some palindrome x ∈ P . Then

wR = (a · x • a)R

= (x • a)R • a by definition of reversal

= aR • xR • a You said we could assume this.

= a • xR • a by definition of reversal

= a • x • a by the inductive hypothesis

= w by assumption

In all three cases, we conclude that w = wR.

(c) Let w be an arbitrary string such that w = wR.

Assume that every string x such that |x| < |w| and x = xR is a palindrome.

There are three cases to consider (mirroring the definition of “palindrome”):

• If w = ε, then w is a palindrome by definition.

• If w = a for some symbol a ∈ Σ, then w is a palindrome by definition.

• Otherwise, we have w = ax for some symbol a and some non-empty string x.
The definition of reversal implies that wR = (ax)R = xRa.
Because x is non-empty, its reversal xR is also non-empty.
Thus, xR = by for some symbol b and some string y.
It follows that wR = bya, and therefore w = (wR)R = (bya)R = ayRb.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that w = wR implies that bya = ayRb.
The recursive definition of string equality immediately implies a = b.

3

Because a = b, we have w = ayRa and wR = aya.
The recursive definition of string equality implies yRa = ya.
It immediately follows that (yRa)R = (ya)R.
Known properties of reversal imply (yRa)R = a(yR)R = ay and (ya)R = ayR.
It follows that ayR = ay, and therefore y = yR.
The inductive hypothesis now implies that y is a palindrome.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome.

4

