CS/ECE 374 A (Spring 2020) Old HW1 Problems with Solutions

Problem OLD.1.1: Consider the recurrence

$$T(n) = \begin{cases} T(\lfloor n/3 \rfloor) + T(\lfloor n/4 \rfloor) + T(\lfloor n/5 \rfloor) + T(\lfloor n/6 \rfloor) + n & n \ge 6\\ 1 & n < 6. \end{cases}$$

Prove by induction that T(n) = O(n).

Solution:

Claim 1. For $c \ge 20$, and for all $n \ge 1$, we have $T(n) \le cn$.

Proof. Base case. For n < 6 the claim holds for any $c \ge 1$ by definition. Induction hypothesis. Let $n \ge 6$. Assume that $T(k) \le ck$ for all $1 \le k < n$. Induction step. We need to prove that $T(n) \le cn$. We know that

$$\begin{aligned} T(n) &= T(\lfloor n/3 \rfloor) + T(\lfloor n/4 \rfloor) + T(\lfloor n/5 \rfloor) + T(\lfloor n/6 \rfloor) + n \\ &\leq c \lfloor n/3 \rfloor + c \lfloor n/4 \rfloor) + c \lfloor n/5 \rfloor) + c \lfloor n/6 \rfloor) + n \quad \text{(by the induction hypothesis)} \\ &\leq cn/3 + cn/4 + cn/5 + cn/6 + n \\ &\leq \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}\right) cn + n = \left(\frac{3}{4} + \frac{1}{5}\right) cn + n = \left(\frac{19}{20}c + 1\right)n \leq cn, \end{aligned}$$

provided that

$$\frac{19}{20}c + 1 \le c \iff 1 \le \frac{1}{20}c \iff c \ge 20.$$

IMPORTANT NOTE: make sure that the "c" in the conclusion from the induction step $(T(n) \leq cn)$ is the same as the "c" you start with from the induction hypothesis $(T(k) \leq ck)$ for k < n). If not (for example, if you could only conclude that $T(n) \leq 1.01cn$), then the whole proof would be incorrect—because the constant factor will "blow up" when we repeat! This leads to another important piece of advice: don't use big-O notation inside induction proofs!

Problem OLD.1.2: Let $L \subseteq \{0,1\}^*$ be a language defined recursively as follows:

- $\varepsilon \in L$.
- For all $w \in L$ we have $0w1 \in L$.
- For all $x, y \in L$ we have $xy \in L$.
- And these are all the strings that are in L.

Prove, by induction, that for any $w \in L$, and any prefix u of w, we have that $\#_0(u) \ge \#_1(u)$. Here $\#_0(u)$ is the number of 0 appearing in u ($\#_1(u)$ is defined similarly). You can use without proof that $\#_0(xy) = \#_0(x) + \#_0(y)$, for any strings x, y.

Solution:

Proof. The proof is by induction on the length of w.

Base case: If |w| = 0 then $w = \varepsilon$, and then $\#_0(w) = 0 \ge \#_1(u) = 0$. Since the only prefix of the empty string is itself, the claim readily follows.

Induction hypothesis: Assume that the claim holds for all strings of length < n.

Induction step: We need to prove the claim for a string w of length n. There are two possibilities:

• w = 0z1, for some string $z \in L$.

Let u be any prefix of w. If $u = \varepsilon$ or u = 0 then the claim clearly holds for u. If u = w, then

$$#_0(u) = #_0(w) = 1 + #_0(z) + 0 \ge 1 + #_1(z) = #_1(w) = #_1(u)$$

which implies the claim (we used the induction hypothesis on z, since $z \in L$ and |z| = |w| - 2 < n).

So the remaining case is when u = 0z', where z' is a prefix of z. In this case,

 $\#_0(u) = \#_0(0z') = 1 + \#_0(z') \ge 1 + \#_1(z') = 1 + \#_1(u) > \#_1(u),$

Again, we used the induction hypothesis on z, since $z \in L$, z' is a prefix of z, and z strictly shorter than w. This implies the claim.

• w = xy, for some strings $x, y \in L$, such that |x|, |y| > 0.

Let u be a prefix of w. If u is a prefix of x, then the claim holds readily by induction. The remaining case is when u = xz, for some z which is prefix of y. Here,

$$\#_0(u) = \#_0(xz) = \#_0(x) + \#_0(z) \ge \#_1(x) + \#_1(z) = \#_1(u)$$

by using the induction hypothesis on x (which is a prefix of itself), and on z (which is a prefix of y), noting that both x and y are strictly shorter than w.

Problem OLD.1.3. Recall that the *reversal* w^R of a string w is defined recursively as follows:

$$w^R := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^R \bullet a & \text{if } w = a \cdot x \end{cases}$$

A *palindrome* is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet Σ .

- (b) Prove $w = w^R$ for every palindrome w (according to your recursive definition).
- (c) Prove that every string w such that $w = w^R$ is a palindrome (according to your recursive definition).

In parts (b) and (c), you may assume without proof that $(x \cdot y)^R = y^R \bullet x^R$ and $(x^R)^R = x$ for all strings x and y.

Solution:

- (a) A string $w \in \Sigma^*$ is a palindrome if and only if either
 - $w = \varepsilon$, or
 - w = a for some symbol $a \in \Sigma$, or
 - w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

(b) Let w be an arbitrary palindrome.

Assume that $x = x^R$ for every palindrome x such that |x| < |w|.

There are three cases to consider (mirroring the three cases in the definition):

- If $w = \varepsilon$, then $w^R = \varepsilon$ by definition, so $w = w^R$.
- If w = a for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.
- Suppose w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in P$. Then

$w^R = (a \cdot x \bullet a)^R$	
$= (x \bullet a)^R \bullet a$	by definition of reversal
$= a^R \bullet x^R \bullet a$	You said we could assume this.
$= a \bullet x^R \bullet a$	by definition of reversal
$= a \bullet x \bullet a$	by the inductive hypothesis
= w	by assumption

In all three cases, we conclude that $w = w^R$.

(c) Let w be an arbitrary string such that $w = w^R$.

Assume that every string x such that |x| < |w| and $x = x^R$ is a palindrome. There are three cases to consider (mirroring the definition of "palindrome"):

- If $w = \varepsilon$, then w is a palindrome by definition.
- If w = a for some symbol $a \in \Sigma$, then w is a palindrome by definition.
- Otherwise, we have w = ax for some symbol a and some non-empty string x. The definition of reversal implies that w^R = (ax)^R = x^Ra. Because x is non-empty, its reversal x^R is also non-empty. Thus, x^R = by for some symbol b and some string y. It follows that w^R = bya, and therefore w = (w^R)^R = (bya)^R = ay^Rb. [At this point, we need to prove that a = b and that y is a palindrome.] Our assumption that w = w^R implies that bya = ay^Rb. The recursive definition of string equality immediately implies a = b.

Because a = b, we have $w = ay^R a$ and $w^R = aya$. The recursive definition of string equality implies $y^R a = ya$. It immediately follows that $(y^R a)^R = (ya)^R$. Known properties of reversal imply $(y^R a)^R = a(y^R)^R = ay$ and $(ya)^R = ay^R$. It follows that $ay^R = ay$, and therefore $y = y^R$. The inductive hypothesis now implies that y is a palindrome.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome.