CS/ECE 374 A (Spring 2020) Homework 7 (due Mar 26 Thursday at 10am)

Instructions: As in previous homeworks.

Problem 7.1:

(a) (8.5 points) We are given a DFA $M=(Q, \Sigma, \delta, s, A)$ over the alphabet $\Sigma=\{0,1\}$ with $m=|Q|$ states, and we are given a string $x=a_{1} \cdots a_{n}$ of length $n\left(a_{i} \in\{0,1\}\right)$. We want to find a string $y=b_{1} \cdots b_{n}$ of length n that is accepted by M and is "closest" to x, in the sense of minimizing the distance $d(x, y)=\left|\left\{i: a_{i} \neq b_{i}\right\}\right|$ (i.e., the number of differing bits).
Describe an efficient dynamic programming algorithm ${ }^{1}$ to solve this problem. The algorithm should output not only the minimum distance but also the closest string y. Analyze the running time as a function of n and m.
(b) (1.5 points) Describe how to modify your algorithm and analysis if the given automaton M is an NFA instead. You may assume that the given NFA does not have ε-transitions (since there are efficient algorithms to remove ε-transitions without increasing the number of states).
(Note: if the analysis is done carefully, the running time in (a) should be better than in (b).)
(Note: the analogous problem for regular expressions can similarly be solved, since regular expressions can be efficiently converted to NFAs.)

Problem 7.2: Given an unordered binary tree T, a preorder traversal is a list (an ordering) of the nodes of T that can be obtained recursively by the following rules:

- If T has a single node r, then the list $\langle r\rangle$ is a preorder traversal.
- If T has root r and has subtrees T_{1} and T_{2} at r 's two children, and L_{1} and L_{2} are valid preorder traversals of T_{1} and T_{2} respectively, then $\langle r\rangle \cdot L_{1} \cdot L_{2}$ and $\langle r\rangle \cdot L_{2} \cdot L_{1}$ are both preorder traversals of T. Here, • denotes concatenation. (You may assume that all non-leaf nodes have degree 2.)

Let $d(\cdot, \cdot)$ be a given distance function, which can be evaluated in constant time.
(a) (8.0 points) Given an unordered binary tree T with n nodes, we want to find a preorder traversal with the minimum cost. Here, the cost of $\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ is defined to be $d\left(v_{1}, v_{2}\right)+d\left(v_{2}, v_{3}\right)+\cdots+d\left(v_{n-1}, v_{n}\right)$.
Describe an efficient dynamic programming algorithm to compute the cost of an optimal traversal. Analyze its worst-case running time. (Note: a correct solution with $O\left(n^{2}\right)$ running time gets full credit; $O\left(n^{3}\right)$ gets a maximum of 6.0 points.)

[^0](b) (2.0 points) Modify your algorithm and/or analysis to obtain a better running time in the special case when T is a balanced binary tree with $O(\log n)$ height.

For example: in the following tree, $\langle d, j, f, e, h, g, i, k, b, a, c\rangle$ and $\langle d, b, c, a, j, k, e, f, h, i, g\rangle$ are two preorder traversals (and there are many more).

Problem 7.3: The motivation behind this problem is how to divide a set of data points into a given number k of clusters.
Given a set P of n points in 2D, a binary space partition (BSP) is a binary tree where each node v stores a subset of points $P(v) \subseteq P$, and for every non-leaf node v with children v_{1} and v_{2}, we have one of the following:

- $P\left(v_{1}\right)=\{p \in P(v) \mid p . x \leq m\}$ and $P\left(v_{2}\right)=\{p \in P(v) \mid p . x>m\}$ for some value m; or
- $P\left(v_{1}\right)=\{p \in P(v) \mid p . y \leq m\}$ and $P\left(v_{2}\right)=\{p \in P(v) \mid p . y>m\}$ for some value m.

In other words, $P(v)$ is split into two subsets $P\left(v_{1}\right)$ and $P\left(v_{2}\right)$ by cutting with either a vertical line $x=m$ or a horizontal line $y=m$. (Here, $p . x$ and $p . y$ denote the x - and y-coordinate of a point p respectively.) At the root r, we have $P(r)=P$.
For a set Q of points, define $c(Q)=\left(\max _{q \in Q} q \cdot x-\min _{q \in Q} q \cdot x\right) \cdot\left(\max _{q \in Q} q \cdot y-\min _{q \in Q} q \cdot y\right)$ (i.e., it is the area of the smallest axis-aligned rectangle containing Q).
Given a set P of n points in 2D and an integer k, we want to find a BSP with k leaves to minimize the cost function $\sum_{\text {leaf } v} c(P(v))$.
Describe (and analyze) an efficient dynamic programming algorithm to compute the cost of an optimal BSP for this problem.
An example of a (not necessarily optimal) BSP with $k=8$ leaves is given below:

[^0]: ${ }^{1}$ See the general note from HW6 on what we expect in a dynamic programming solution.

