
CS/ECE 374 A (Spring 2020)
Homework 6 (due Mar 12 Thursday at 10am)

Instructions: As in previous homeworks.

General Note: In any dynamic programming solution, you should follow the steps below (if we
explicitly state that pseudocode is not required, then step 4 may be skipped):

1. first give a clear, precise definition of the subproblems (i.e., what the recursive function
is intended to compute);

2. then derive a recursive formula to solve the subproblems (including base cases), with
justification or proof of correctness if the formula is not obvious;

3. specify a valid evaluation order;

4. give pseudocode to evaluate your recursive formula bottom-up (with loops instead of
recursion); and

5. analyze the running time.

Do not jump to pseudocode immediately. Never skip step 1!

Problem 6.1:

(a) (7.5 points) Given an array A of n numbers, describe an efficient dynamic programming
algorithm to find the length of a longest subsequence S that is (strictly) increasing, such
that both S and SR are subsequences of A. Here, SR denotes the reverse of S.

(For example, for A = 〈1, 2, 3, 4〉, the optimal length is 1; for A = 〈1, 15, 8, 2, 3, 5, 4, 3, 8, 10, 1, 9〉,
the optimal length is 4, because both 〈1, 3, 5, 8〉 and 〈8, 5, 3, 1〉 are subsequences.)

Hint: for the definition of subproblems, let L(i, j, k) be the length of a longest increasing
subsequence such that S is a subsequence of A[i, . . . , n] and SR is a subsequence of
A[1, . . . , j], and all elements in S are greater than A[k].

(b) (2.5 points) Give pseudocode to output an optimal subsequence S (not just its length).

Problem 6.2: We have n jobs, where job i starts at time ti and has value vi > 0, with t1 < t2 <
· · · < tn. Each job requires ∆ units of time to complete (and so job i ends at time ti + ∆).
We have 2 servers. The goal is to choose a subset of jobs with the largest total value that can
be handled by the 2 servers.

It is not difficult to see that an optimal strategy would have the servers alternately handle
the chosen jobs—in other words, if the selected jobs are i1, . . . , ik with i1 < i2 < · · · < ik,
server 1 would handle jobs i1, i3, . . . and server 2 would handle jobs i2, i4, . . . (You don’t need
to prove this fact.)

The problem can thus be reformulated as follows: choose i1 < i2 < · · · < ik to maximize
vi1 + vi2 + · · · + vik , subject to the constraint that ti3 − ti1 , ti4 − ti2 , . . . , tik − tik−2

are all
greater than ∆.

1



Describe an efficient dynamic programming algorithm to compute the value of an optimal
solution. (You do not need to output the jobs in an optimal subset. O(n3) time will be good
enough to get full credit.)

Problem 6.3: We are given an n × n grid. At each position (i, j) (with 1 ≤ i, j ≤ n), there is
a prize money of wij dollars (with wij ≥ 0). Your car is initially at the lower-left corner
(position (1, 1)) and can only go up or right. Your goal is to travel to the upper-right corner
(position (n, n)) and collect as much money as possible.

(a) (5.0 points) Describe an efficient dynamic programming algorithm to compute the value
of an optimal solution. Define subproblems, derive recursive formulas, specify evaluation
order, etc. as usual, but pseudocode is not required for this question. (You do not need
to output an optimal path.)

(b) (5.0 points) Describe an efficient algorithm to compute the optimal value for a variant
of the problem, where we are given a number k, and there is an additional constraint
that the path can make at most k turns. Again, pseudocode is not required. (You may
assume that k ≤ 2n, but k may not be a constant.)

(In the following example, the optimal value for (a) is 0 + 4 + 0 + 5 + 2 + 11 + 7 + 8 + 0 = 37;
this solution, shown in blue, uses 5 turns. For (b) with k = 2, the optimal value with 2 turns
is 0 + 4 + 0 + 5 + 2 + 9 + 15 + 0 + 0 = 35.)

8 0 15 0 0

2 4 9 7 8

3 1 2 11 0

0 0 5 0 0

0 4 0 0 16

2


