CS/ECE 374 A (Spring 2020) Homework 11 (due Apr 30 Thursday at 10am)

Instructions: As in previous homeworks. See Old HW 11 for tips and examples on how to write NP-completeness proofs.

Problem 11.1: Given an undirected graph G, we want to decide whether G contains a spanning tree where every node has degree at most 4. Prove that this problem is NP-complete.
[Hint: you may assume that the Hamiltonian Path problem is NP-complete.]

Problem 11.2: We need to schedule final exams for N classes. We want to minimize the number of days, but don't want any students to take more than 2 exams on a single day.
One way to formulate this problem is as follows: There are M students, and for each $j=$ $1, \ldots, M$, we are given a set $S_{j} \subseteq\{1, \ldots, N\}$ of the classes that student j is taking. We are also given an integer D. We want to decide whether there exists a function $f:\{1, \ldots, N\} \rightarrow$ $\{1, \ldots, D\}$ such that for every j and k, the number of elements in $\left\{x \in S_{j} \mid f(x)=k\right\}$ is at most 2.
Prove that this problem is NP-complete.
[Hint: you may assume that 3 -Coloring is NP-complete. Observe that if we create 4 copies of a vertex v and $D=3$, then two copies of v must have the same f value. For each edge $u v$, create a constant number of sets (of size 3 or 4)...]

Problem 11.3: Consider the following version of the Crossword-PuzzLE problem:
Input: $A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}$, where each A_{i} is a finite set of length- n strings and each B_{j} is a finite set of length- m strings, over a finite alphabet Σ.
Output: "yes" iff there exists an $m \times n$ table T of symbols such that for each $i=1, \ldots, m$, the i-th row of T is a string in the set A_{i}, and for each $j=1, \ldots, n$, the j-th column of T is a string in the set B_{j}.
Example: on the input $A_{1}=\{\mathrm{CAT}, \mathrm{DOG}\}, A_{2}=\{\mathrm{CAT}, \mathrm{APE}, \mathrm{AGO}\}, A_{3}=\{\mathrm{BAD}, \mathrm{BEE}\}, B_{1}=$ $\{\mathrm{CAB}, \mathrm{DAB}\}, B_{2}=\{\mathrm{APE}, \mathrm{EGG}\}$, and $B_{3}=\{\mathrm{GOD}, \mathrm{TEE}\}$, the answer is yes, with the following solution T :

CAT
APE
BEE
Prove that Crossword-PuzzLE is NP-complete.
[Hint: reduce from 3SAT. Given a 3CNF formula F with variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}, let b_{j} be the length- m binary string (over $\Sigma=\{0,1\}$) such that the i-th bit is 1 iff x_{j} appears in C_{i}, and let b_{j}^{\prime} be the length- m binary string such that the i-th bit is 1 iff $\overline{x_{j}}$ appears in C_{i}. Define $B_{j}=\left\{b_{j}, b_{j}^{\prime}\right\}$, which contains 2 strings. Now define A_{i} to contain 7 appropriately chosen strings...]

