CS/ECE 374 A (Spring 2020) Homework 11 (due Apr 30 Thursday at 10am)

Instructions: As in previous homeworks. See Old HW 11 for tips and examples on how to write NP-completeness proofs.

Problem 11.1: Given an undirected graph G, we want to decide whether G contains a spanning tree where every node has degree at most 4. Prove that this problem is NP-complete.

[Hint: you may assume that the HAMILTONIAN PATH problem is NP-complete.]

Problem 11.2: We need to schedule final exams for N classes. We want to minimize the number of days, but don't want any students to take more than 2 exams on a single day.

One way to formulate this problem is as follows: There are M students, and for each $j = 1, \ldots, M$, we are given a set $S_j \subseteq \{1, \ldots, N\}$ of the classes that student j is taking. We are also given an integer D. We want to decide whether there exists a function $f : \{1, \ldots, N\} \rightarrow \{1, \ldots, D\}$ such that for every j and k, the number of elements in $\{x \in S_j \mid f(x) = k\}$ is at most 2.

Prove that this problem is NP-complete.

[Hint: you may assume that 3-COLORING is NP-complete. Observe that if we create 4 copies of a vertex v and D = 3, then two copies of v must have the same f value. For each edge uv, create a constant number of sets (of size 3 or 4)...]

Problem 11.3: Consider the following version of the CROSSWORD-PUZZLE problem:

Input: $A_1, \ldots, A_m, B_1, \ldots, B_n$, where each A_i is a finite set of length-*n* strings and each B_j is a finite set of length-*m* strings, over a finite alphabet Σ .

Output: "yes" iff there exists an $m \times n$ table T of symbols such that for each $i = 1, \ldots, m$, the *i*-th row of T is a string in the set A_i , and for each $j = 1, \ldots, n$, the *j*-th column of T is a string in the set B_j .

Example: on the input $A_1 = \{CAT, DOG\}, A_2 = \{CAT, APE, AGO\}, A_3 = \{BAD, BEE\}, B_1 = \{CAB, DAB\}, B_2 = \{APE, EGG\}, and B_3 = \{GOD, TEE\}$, the answer is yes, with the following solution T:

CAT APE BEE

Prove that CROSSWORD-PUZZLE is NP-complete.

[Hint: reduce from 3SAT. Given a 3CNF formula F with variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m , let b_j be the length-m binary string (over $\Sigma = \{0, 1\}$) such that the *i*-th bit is 1 iff x_j appears in C_i , and let b'_j be the length-m binary string such that the *i*-th bit is 1 iff $\overline{x_j}$ appears in C_i . Define $B_j = \{b_j, b'_j\}$, which contains 2 strings. Now define A_i to contain 7 appropriately chosen strings...]