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Part I

Longest Common Subsequence
Problem
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The LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y .

Example
LCS between ABAZDC and BACBAD is4 via ABAD

Derive a dynamic programming algorithm for the problem.
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Part II

Maximum Weighted Independent Set
in Trees
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Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G
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Maximum weight independent set in above graph: {B,D}
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Maximum Weight Independent Set in a Tree

Input Tree T = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in T
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Maximum weight independent set in above tree: ??
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Towards a Recursive Solution

For an arbitrary graph G:
1 Number vertices as v1, v2, . . . , vn
2 Find recursively optimum solutions without vn (recurse on

G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?
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Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.
Case r 6∈ O : Then O contains an optimum solution for each

subtree of T hanging at a child of r .
Case r ∈ O : None of the children of r can be in O. O − {r}

contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)
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Example
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A Recursive Solution

T(u): subtree of T hanging at node u
OPT(u): max weighted independent set value in T(u)

OPT(u) = max

{∑
v child of u OPT(v),

w(u) +
∑

v grandchild of u OPT(v)
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Iterative Algorithm

1 Compute OPT(u) bottom up. To evaluate OPT(u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.
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Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T
for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi ] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj ] is accessed only by its
parent and grand parent.
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Example
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Part III

Context free grammars: The CYK
Algorithm
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Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free
grammars. Why?

CFLs are sufficiently expressive to support what is needed.
At the same time one can “efficiently” solve the parsing problem:
given a string/program w , is it a valid program according to the
CFG specification of the programming language?
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CFG specification for C
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Algorithmic Problem

Given a CFG G = (V ,T ,P, S) and a string w ∈ T∗, is
w ∈ L(G)?

That is, does S derive w?
Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)
Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.
(This is the only place in the grammar that has an ε.)
Every CFG G can be converted into CNF form via an efficient
algorithm
Advantage: parse tree of constant degree.
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CYK Algorithm

CYK Algorithm = Cocke-Younger-Kasami algorithm
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Example

S → ε | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Question:
Is 000111 in L(G)?
Is 00011 in L(G)?
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Towards Recursive Algorithm

Assume G is a CNF grammar.
S derives w iff one of the following holds:
|w| = 1 and S → w is a rule in P
|w| > 1 and there is a rule S → AB and a split w = uv with
|u|, |v| ≥ 1 such that A derives u and B derives v

Observation: Subproblems generated require us to know if some
non-terminal A will derive a substring of w .
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Recursive solution

1 Input: w = w1w2 . . .wn
2 Assume r non-terminals in G: R1, . . . ,Rr .
3 R1: Start symbol.
4 f (`, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+`−1 ∈ L(Rb).

= Substring w starting at pos ` of length s is deriveable by Rb .
5 Recursive formula: f (1, s, a) is 1 iff

(
Ra → ws

)
∈ G.

6 For ` > 1:

f (`, s, a) =
`−1∨
p=1

∨
(Ra→Rb Rc)∈G

(
f (p, s, b) ∧ f (`− p, s + p, c)

)

7 Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.
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Analysis

Assume G = {R1,R2, . . . ,Rr} with start symbol R1

Number of subproblems: O(rn2)

Space: O(rn2)

Time to evaluate a subproblem from previous ones: O(|P|n)
where P is set of rules
Total time: O(|P|rn3) which is polynomial in both |w| and
|G|. For fixed G the run time is cubic in input string length.
Running time can be improved to O(n3|P|).
Not practical for most programming languages. Most languages
assume restricted forms of CFGs that enable more efficient
parsing algorithms.
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CYK Algorithm

Input string: X = x1 . . . xn.
Input grammar G: r nonterminal symbols R1...Rr, R1 start symbol.

P[n][n][r ]: Array of booleans. Initialize all to FALSE
for s = 1 to n do

for each unit production Rv → xs do
P[1][s][v]← TRUE

for ` = 2 to n do // Length of span
for s = 1 to n − ` + 1 do // Start of span

for p = 1 to `− 1 do // Partition of span
for all (Ra → RbRc) ∈ G do

if P[p][s][b] and P[l − p][s + p][c] then
P[l][s][a]← TRUE

if P[n][1][1] is TRUE then
return ``X is member of language''

else
return ``X is not member of language''
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Example

S → ε | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Question:
Is 000111 in L(G)?
Is 00011 in L(G)?

Order of evaluation for iterative algorithm: increasing order of
substring length.
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Takeaway Points

1 Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

2 Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

3 The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.

Chan, Har-Peled, Hassanieh (UIUC) CS374 26 Spring 2019 26 / 26


	Longest Common Subsequence Problem
	Maximum Weighted Independent Set in Trees
	Context free grammars: The CYK Algorithm

