
HW 5 Due on Wednesday, October 7, 2020 at 10am

CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.2

Submission instructions as in previous homeworks.

13 (100 pts.) OLD Homework problem (not for submission):
Not a sorting network.

You are given an array A[1 . . . n], but you can not access it directly (or even read the values
in it, or compare them directly). Instead, you are give some procedures that can access the array
and do certain operations. Your task is to sort the array.

13.A. (30 pts.) You are given a procedure sortBlock(i), which sorts (in increasing order and in
place), all the elements in A[i . . . , i + u], where u ≥ 1 is a prespecified fixed parameter (i.e.,
u is a known fixed number between 1 and n, but it is not under your control). For example,
for the following array:
2.71828 18284 59045 23536 02874 7.1352 66249

1 2 3 4 5 6 7
With u = 3, the call sortBlock(2) would result in:
2.71828 02874 18284 23536 59045 7.1352 66249

1 2 3 4 5 6 7
Describe an algorithm, that uses O

(
(n/u)2

)
calls to sortBlock, and sorts the array.

What is the running time of your algorithm if calling sortBlock takes O(1) time?
13.B. (50 pts.) Congratulations! You just got a better sorting primitives bMerge, copy, and a

work array W [1, . . . , n].

(i) copy can copy any block of length at most u+1 between the two arrays (or inside them).
(ii) bMerge is weirder. It takes two blocks L and U (both with at most u + 1 elements),

treat them as a single block, sort the unified block, and writes the smaller |L| elements
(in sorted order) to L, and the other (larger) |U | elements in sorted order to U (the two
blocks do not have to be of the same length).
For example, for
2.71828 18284 59045 23536 02874 7.1352 66249

1 2 3 4 5 6 7
With u = 1, the call bMerge(A[2 . . . 3], A[6 . . . 7]) would result in:
2.71828 7.1352 18284 23536 02874 59045 66249

1 2 3 4 5 6 7
bMerge also returns the number of elements in original block L that are still in L after
the operation is completed. In this example, since 18284 was in L before the operation,
and it is in L after the operation is completed, the returned value would be 1.

Note that the blocks given to bMerge can not overlap.
Assume that A[1 . . . n/2] and A[n/2 + 1, . . . n] are already sorted (n is even). Describe an
algorithm that performs a minimal total number of calls to sortBlock, copy and bMerge,

1

https://courses.engr.illinois.edu/cs374/fa2019/hw/hw_01.pdf

and sorts the array A. What is the running time of your algorithm if calling sortBlock,
copy and bMerge takes O(1) time? (Prove your bound.)

13.C. (20 pts.) Building on (B) and expanding on it, describe a sorting algorithm using these
primitives that sort the given array A (that is initially not sorted). What is the running time
of your algorithm if calling sortBlock, copy and bMerge takes O(1) time? Naturally, the
faster the better (Prove your bound).

14 (100 pts.) OLD Homework problem (not for submission):
Not a sorting question.

Consider an array A[0 . . n − 1] with n distinct elements. Each element is an ` bit string
representing a natural number between 0 and 2` − 1 for some ` > 0. The only way to access any
element of A is to use the function FetchBit(i, j) that returns the jth bit of A[i] in O(1) time.

14.A. (20 pts.) Suppose n = 2` − 1, i.e. exactly one of the `-bit strings does not appear in A.
Describe an algorithm to find the missing bit string in A using Θ(n log n) calls to FetchBit
without converting any of the strings to natural numbers.

14.B. (40 pts.) Suppose n = 2` − 1. Describe an algorithm to find the missing bit string in A
using only O(n) calls to FetchBit.

14.C. (40 pts.) Suppose n = 2`−k, i.e. exactly k of the l−bit strings do not appear in A. Describe
an algorithm to find the k missing bit strings in A using only O(n log k) calls to FetchBit.

15 (100 pts.) OLD Homework problem (not for submission):
Don’t want to walk too much.

You are given a set of n distinct points on a line with x-coordinates x1, x2, .. xn. The points
are not sorted and their values are stored in an array X where X[i] = xi. Each point is associated
with a positive weight wi such that

∑
wi = 1. The weights are also stored in an array W where

W [i] = wi. Our goal is to find xj that minimizes the weighted distance given by:
∑

i wi|xj − xi|.

15.A. (10 pts.) (Easy.) Show that if all the weights are equal, xj is the median of X.
15.B. (20 pts.) In the general case, show that xj is the point that satisfies the following property:

∑
xi<xj

wi <
1

2
and

∑
xi>xj

wi ≤
1

2
.

15.C. (20 pts.) Given, X and W , describe in few lines an algorithm to find xj. What is the
running time of your algorithm. (Your algorithm for this part should be simpler than the
algorithm for the next part.)

15.D. (50 pts.) Given, X and W , describe an algorithm to find xj in O(n) time. Prove the bound
on the running time of your algorithm.

2

