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Today

Computational Complexity 

P, NP, PSPACE, EXP

NP-completeness 

Non-deterministic Turing Machines
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Resource Bounded Computation
Interested in solving problems using limited time/memory 

T-time TM:  
On any input of length n,  halts within T(n) steps. 

Polynomial-Time TM:  
T-time TM where T is some polynomial 

e.g., T(n) = 2n + 100, T(n) = 5n2 + 1, T(n) = n42 + 1. 

S-Space TM:  
On any input of length n, uses at most S(n) tape cells.  

Polynomial-Space TM: When S is a polynomial
3
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P, PSPACE, EXP
Sub-classes of R, the class of all 

decidable languages 

P = class of languages decided 
by polynomial-time TMs. 

PSPACE = class of languages 
decided by polynomial-space 

TMs. 

EXP = class of languages 
decided by exponential-time 

TMs.
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P as feasible computation
The most standard proxy for “feasible” computation 

Caveat: n50 is not feasible, even for small values of n. 

Why not model say, n4 as feasible? 

Will be model dependent:  
depends on 1-tape TM vs. k-tape TM, TM vs. RAM,  

size of the tape alphabet etc. 

Typically, polynomial overheads when simulating one model in 
another. Hence P is the same class in all such models. 

Typically, for interesting problems in P, reasonably efficient 
algorithms have been developed.  

(But this is provably impossible for all of P.)
5
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NP
An important class of languages 

Informally: NP is the class of languages with an 
efficiently verifiable certificate of membership 

e.g., LSudoku = Set of all generalized (n2×n2) Sudoku 
puzzles with a solution  

Membership certificate: a solution.  
Efficiently verifiable  

(Linear time to check that all columns, rows and the n×n 

cells satisfy the rules in each solution)

6
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NP
Informally: NP is the class of languages with an 
efficiently verifiable certificate of membership 

Intuitively, for many problems it is much easier to 
verify a solution than to find one (or to find out that 

one doesn’t exist) 

Major Open Question:  
Prove that this is the case for even one language! 

7
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NP
Formally: 

L ∈ NP iff ∃ V ∈ P and a polynomial p s.t. 
L = { x | ∃ w ∈ {0,1}p(|x|) s.t.  (x,w) ∈ V } 

Note: We insist |w| is polynomial in |x|, so that the 
verification can be done in time polynomial in |x|: 

Suppose V can be decided by a pʹ time-bounded TM.  
Then time to verify the certificate: 

pʹ(|(x,w)|) = O(pʹ(|x|+|w|)) = O( pʹ(|x|+p(|x|)) ) ≤ pʹʹ(|x|)  
for some polynomial pʹʹ

8
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NP: Examples

All the languages in P 

Suppose L ∈ P  
Let V = { (x,ε) | x ∈ L } so that  

L = { x | ∃w ∈ {0,1}0  s.t.  (x,w) ∈ V } 
where V ∈ P

P ⊆ NP

9

L in NP :  there is V in P s.t.  
L = { x | ∃ w (short)  s.t.  (x,w) ∈ V }
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NP: Examples

Checking if there is a structure 

LHamilton = { G | G has a  Hamiltonian Cycle}

VHamilton = { (G,C) | C is a  Hamiltonian Cycle in G }

LClique = { (G,t) | G has a subgraph isomorphic to Kt }

VClique = { (G,t,H) | H is a subgraph of G isomorphic to Kt }

10

L in NP :  there is V in P s.t.  
L = { x | ∃ w (short)  s.t.  (x,w) ∈ V }
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NP: Examples

Checking if there is a sufficiently good solution to an 
optimization problem 

LTSP = { (G,t) | G is a graph with a TSP tour of cost ≤ t }
VTSP = { (G,t,P) | P is a TSP tour in G with cost ≤ t }
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L in NP :  there is V in P s.t.  
L = { x | ∃ w (short)  s.t.  (x,w) ∈ V }

Traveling Sales-person 
Problem
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NP: Examples

In an axiomatic system, checking if a mathematical 
theorem has a proof (with at most t characters) 

LProve = { (Π,t) | Π is a statement with a proof of size ≤ t }
VProve = { (Π,t,P) | P is a proof of Π with size ≤ t }

12

L in NP :  there is V in P s.t.  
L = { x | ∃ w (short)  s.t.  (x,w) ∈ V }
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NP: Examples

Breaking a Public-Key Encryption Scheme: Recovering 
the secret-key from a public-key 

LPKE-Keys = { (PK,w) | PK is a public-key whose secret-key 
has w as a prefix }

VPKE-Keys = { (PK,w,SK) | secret-key SK yields public-key PK 
and has prefix w }

13

L in NP :  there is V in P s.t.  
L = { x | ∃ w (short)  s.t.  (x,w) ∈ V }
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If P = NP, then?
Suppose any L ∈ NP can be decided in time say, 

quadratic in the time to decide its certificate language V 

Can solve large-scale optimization problems (save large 
amounts of energy, material and other resources) 

Prove many outstanding mathematical theorems (if they 
have proofs short enough for mathematicians to derive 

manually) 

Make Public-Key Cryptography impossible 

We believe P≠NP, and that these problems don’t have 
polynomial-time algorithms!14
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Complexity of NP

Best known algorithms for many problems in NP take 
exponential time 

How hard can problems in NP be?  
Do they all have at least exponential time algorithms? 

Yes! 

To check if x ∈ L, can try every possible value of w  
and check if (x,w) ∈ V

15
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NP ⊆ PSPACE
For any L ∈ NP, a polynomial-space TM ML. 

Run through every possible value of w ∈ {0,1}p(|x|)  
and call a polynomial-time subroutine MV to check if 

(x,w) ∈ V. 

Suppose MV is a pʹ-time TM. Total space? 

MV is a pʹ-space TM too.  

ML is a pʹʹ-space TM, where 
pʹʹ(n) =  O( p(n) + pʹ(n+p(n)) )

16
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P ⊆ NP ⊆ PSPACE ⊆ EXP
Claim: PSPACE ⊆ EXP 

For L ∈ PSPACE, suppose  
a p-space TM ML with d states and |Γ| = k

Number of distinct IDs on an input of size n? 

d × p(n) × kp(n)   ≤   2pʹ(n)

If ML doesn't halt within that many steps,  
it must have repeated some ID  ⇒ in an infinite loop! 

An exponential-time TM for L: Simulate ML for 2pʹ(n) steps.  
If ML has not halted already, halt and reject. 

17
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P ⊆ NP ⊆ PSPACE ⊆ EXP

It is known that P ≠ EXP

(Time-Hierarchy Theorem)

Hence, at least one 
containment in the chain  

P ⊆ NP ⊆ PSPACE ⊆  EXP  
is strict.

All 3 widely believed to be 
strict

18
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Polynomial-Time Reduction

Suppose f is a reduction from L1 to L2 

We say f  is a polynomial-time reduction if f can be 
computed by a polynomial-time TM 

In that case we write L1 ≤poly L2 

Positive Implication: If L1 ≤poly L2 and L2 ∈ P then L1 ∈ P

Note: | f(x) | ≤ p(|x|) for a polynomial p

19
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NP-Completeness

20

Consider the language 

   ACCEPTNP = { (z, x, m, 1t) | ∃w ∈ {0,1}m s.t.  
                                                  Mz accepts (x,w) within t steps }

∀ L ∈ NP, L ≤poly ACCEPTNP 
ACCEPTNP ∈ NP
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NP-Completeness
Claim: ACCEPTNP ∈ NP

         VAccept = { (z, x, m,1t,w) | w ∈ {0,1}m and  
                                             Mz accepts (x,w) within t steps }

21

Claim: ∀ L ∈ NP, L ≤poly ACCEPTNP 

Let V ∈ P and polynomial p be s.t.  
L = { x | ∃ w ∈ {0,1}p(|x|) s.t.  (x,w) ∈ V }

Polynomial-time reduction:   f(x) = (z, x, m, 1t)  
where z s.t. Mz is a pʹ-time TM for V, m=p(|x|), t=pʹ(|(x,1m)|)
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NP-Completeness

Implication: ACCEPTNP  ∈ P ⇔ NP = P 

22

Consider the language 

   ACCEPTNP = { (z, x, m, 1t) | ∃w ∈ {0,1}m s.t.  
                                                  Mz accepts (x,w) within t steps }

∀ L ∈ NP, L ≤poly ACCEPTNP 
ACCEPTNP ∈ NP

L ≤poly Lʹ and Lʹ ∈ P 
⇒ L ∈ P
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NP-Completeness

Any NP-complete language is one of the hardest NP 
languages: if it has a T(n)-time algorithm, no NP 
language needs more than p(n) + T(p(n)) time for 

some polynomial p (that depends on the language) 

If any NP-complete language is in P, 
then P = NP

23

A language A is said to be NP-complete if 
A ∈  NP 

∀ L ∈  NP, L ≤poly A
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NP-Completeness

ACCEPTNP  is an NP-complete language 

Next time: Several natural problems are  
NP-complete languages 

More than 50 years of effort into finding efficient 
algorithms for many of these problems 

Now widely believed that such algorithms do not 
exist

24
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Non-Deterministic TM 
Recall that in a TM the finite control is implemented as 

(essentially) a DFA 

Non-Deterministic TM (NTM): Allow the finite control to 
be an NFA 

δ : Q × Γ → �( Q × Γ × { L, R } ) 

From an ID the TM can move to 0 or more IDs by 
following each possible transition in the set returned 

by δ 

25
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Non-Deterministic TM 
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ID0

As in the case of NFAs, we say an NTM accepts a 
string if there exists some execution path starting from 
the initial ID that accepts (even if some others reject)
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Non-Deterministic TM 
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ID0

A normal (deterministic) TM can simulate an NTM 
execution by doing a breadth-first search on the above 

(implicit) graph
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Polynomial-Time NTM

28

ID0

There is a polynomial p s.t., on any input x, every 
execution thread should finish within p(|x|) steps
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Polynomial-Time NTM
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ID0

Any path in the execution tree can be specified by the 
sequence of non-deterministic choices: a k-ary string 

of length p(n) (=depth), where k is max |δ(q,a)|
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NP and NTM

⇒ : Suppose L has certificate language V ∈ P.  
NTM M behaves as follows: 
‣ write down a “certificate” w of the appropriate length,  

writing 0 or 1 non-deterministically at each step.  
‣ deterministically check if (x,w) ∈ V, and accept if so.  
M accepts x iff ∃ w (of the correct length) s.t. (x,w) ∈ V. 

⇐ :  Define V  s.t. (x,w) ∈ V iff when M is run with start ID for 
input x, using w as the string of non-deterministic choices, 
it accepts.

30

L ∈ NP ⇔ ∃ a polynomial-time NTM M s.t.  L(M)=L


