P and NP

Lecture 22

CS 374

Today

Computational Complexity

P, NP, PSPACE, EXP

NP-completeness

Non-deterministic Turing Machines

Resource Bounded Computation

Interested in solving problems using limited time/memory

T-time TM:

On any input of length n, halts within T(n) steps.

Polynomial-Time TM:

T-time TM where T is some polynomial

e.g.,
$$T(n) = 2n + 100$$
, $T(n) = 5n^2 + 1$, $T(n) = n^{42} + 1$.

S-Space TM:

On any input of length n, uses at most S(n) tape cells. Polynomial-Space TM: When S is a polynomial

S 374

P, PSPACE, EXP

Sub-classes of **R**, the class of all decidable languages

P = class of languages decided by *polynomial-time TMs*.

PSPACE = class of languages decided by *polynomial-space TMs*.

EXP = class of languages decided by *exponential-time* TMs.

The most standard proxy for "feasible" computation

Caveat: n^{50} is not feasible, even for small values of n.

Why not model say, n^4 as feasible?

Will be model dependent: depends on 1-tape TM vs. k-tape TM, TM vs. RAM, size of the tape alphabet etc.

Typically, polynomial overheads when simulating one model in another. Hence **P** is the same class in all such models.

Typically, for *interesting* problems in **P**, reasonably efficient algorithms have been developed.

(But this is provably impossible for all of **P**.)

NP

An important class of languages

Informally: **NP** is the class of languages with an <u>efficiently verifiable certificate of membership</u>

e.g., L_{Sudoku} = Set of all generalized ($n^2 \times n^2$) Sudoku puzzles with a solution

Membership certificate: a solution. Efficiently verifiable

(Linear time to check that all columns, rows and the $n \times n$ cells satisfy the rules in each solution)

00 374

NP

Informally: **NP** is the class of languages with an efficiently verifiable <u>certificate of membership</u>

Intuitively, for many problems it is <u>much</u> easier to verify a solution than to find one (or to find out that one doesn't exist)

Major Open Question: Prove that this is the case for even one language!

May not have an easy-to-verify certificate of non-membership

Formally:

NP

$$L \in \mathbb{NP}$$
 iff $\exists V \in \mathbb{P}$ and a polynomial p s.t. $L = \{x \mid \exists w \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,w) \in V\}$

Note: We insist |w| is polynomial in |x|, so that the verification can be done in time polynomial in |x|:

Suppose V can be decided by a p' time-bounded TM. Then time to verify the certificate:

$$p'(|(x,w)|) = O(p'(|x|+|w|)) = O(p'(|x|+p(|x|))) \le p''(|x|)$$
 for some polynomial p''

Lin NP: there is Vin Ps.t. $L = \{ x \mid \exists w \text{ (short) s.t. } (x,w) \in V \}$

All the languages in **P**

Suppose $L \in \mathbf{P}$ Let $V = \{ (x, \varepsilon) \mid x \in L \}$ so that $L = \{ x \mid \exists w \in \{0,1\}^0 \text{ s.t. } (x,w) \in V \}$ where $V \in \mathbf{P}$

 $P \subseteq NP$

NP: Examples


```
L \text{ in } \mathbf{NP}: there is V \text{ in } \mathbf{P} s.t. L = \{ x \mid \exists w \text{ (short) } \text{s.t. } (x,w) \in V \}
```

Checking if there is a structure

```
L_{\text{Hamilton}} = \{ G \mid G \text{ has a Hamiltonian Cycle} \}
V_{\text{Hamilton}} = \{ (G,C) \mid C \text{ is a Hamiltonian Cycle in } G \}
```

 $L_{\text{Clique}} = \{ (G,t) \mid G \text{ has a subgraph isomorphic to } K_t \}$ $V_{\text{Clique}} = \{ (G,t,H) \mid H \text{ is a subgraph of } G \text{ isomorphic to } K_t \}$


```
L \text{ in } \mathbf{NP}: there is V \text{ in } \mathbf{P} s.t. L = \{ x \mid \exists w \text{ (short) s.t. } (x,w) \in V \}
```

Checking if there is a sufficiently good solution to an optimization problem

```
L_{\mathsf{TSP}} = \{ (G,t) \mid G \text{ is a graph with a TSP tour of cost } \leq t \}
V_{\mathsf{TSP}} = \{ (G,t,P) \mid P \text{ is a TSP tour in } G \text{ with cost } \leq t \}
```

Traveling Sales-person Problem


```
L \text{ in } \mathbf{NP}: there is V \text{ in } \mathbf{P} s.t. L = \{ x \mid \exists w \text{ (short) } \text{s.t. } (x,w) \in V \}
```

In an axiomatic system, checking if a mathematical theorem has a proof (with at most *t* characters)

 $L_{\text{Prove}} = \{ (\Pi, t) \mid \Pi \text{ is a statement with a proof of size} \leq t \}$ $V_{\text{Prove}} = \{ (\Pi, t, P) \mid P \text{ is a proof of } \Pi \text{ with size} \leq t \}$


```
L \text{ in } \mathbf{NP}: there is V \text{ in } \mathbf{P} s.t. L = \{ x \mid \exists w \text{ (short) } \text{s.t. } (x,w) \in V \}
```

Breaking a Public-Key Encryption Scheme: Recovering the secret-key from a public-key

```
L_{PKE-Keys} = \{ (PK,w) \mid PK \text{ is a public-key whose secret-key has } w \text{ as a prefix } \}
```

 $V_{\text{PKE-Keys}} = \{ (PK, w, SK) \mid \text{secret-key } SK \text{ yields public-key } PK$ and has prefix $w \}$

If P = NP, then?

Suppose any $L \in \mathbf{NP}$ can be decided in time say, quadratic in the time to decide its certificate language V

Can solve large-scale optimization problems (save large amounts of energy, material and other resources)

Prove many outstanding mathematical theorems (if they have proofs short enough for mathematicians to derive manually)

Make Public-Key Cryptography impossible

We believe **P**≠**NP**, and that these problems don't have polynomial-time algorithms!

Best known algorithms for many problems in **NP** take exponential time

How hard can problems in **NP** be? Do they all have at least exponential time algorithms?

Yes!

To check if $x \in L$, can try every possible value of w and check if $(x,w) \in V$

NP ⊆ PSPACE

For any $L \in \mathbf{NP}$, a polynomial-space TM M_L .

Run through every possible value of $w \in \{0,1\}^{p(|x|)}$ and call a polynomial-time subroutine M_V to check if $(x,w) \in V$.

Suppose M_V is a p'-time TM. Total space?

 M_V is a p'-space TM too.

$$M_L$$
 is a p'' -space TM, where $p''(n) = O(p(n) + p'(n+p(n)))$

CS 374

P ⊆ NP ⊆ PSPACE ⊆ EXP

Claim: **PSPACE** ⊆ **EXP**

For $L \in \mathbf{PSPACE}$, suppose a p-space TM M_L with d states and $|\Gamma| = k$

Number of distinct IDs on an input of size *n*?

$$d \times p(n) \times k^{p(n)} \le 2^{p'(n)}$$

If M_L doesn't halt within that many steps, it must have repeated some ID \Rightarrow in an infinite loop!

An exponential-time TM for L: Simulate M_L for $2^{p'(n)}$ steps. If M_L has not halted already, halt and reject.

4 8 8 4

P ⊆ NP ⊆ PSPACE ⊆ EXP

It is known that **P** ≠ **EXP**

(Time-Hierarchy Theorem)

Hence, at least one containment in the chain **P** ⊆ **NP** ⊆ **PSPACE** ⊆ **EXP** is strict.

All 3 widely believed to be strict

Polynomial-Time Reduction

Suppose f is a reduction from L_1 to L_2

We say f is a polynomial-time reduction if f can be computed by a polynomial-time TM

In that case we write $L_1 \leq_{poly} L_2$

Positive Implication: If $L_1 \leq_{poly} L_2$ and $L_2 \in \mathbf{P}$ then $L_1 \in \mathbf{P}$

Note: $|f(x)| \le p(|x|)$ for a polynomial p

NP-Completeness

Consider the language

 $ACCEPT_{NP} = \{ (z, x, m, 1^t) \mid \exists w \in \{0,1\}^m \text{ s.t.} \}$ M_z accepts (x,w) within t steps }

> $ACCEPT_{NP} \in \mathsf{NP}$ $\forall L \in \mathbb{NP}, L \leq_{poly} ACCEPT_{NP}$

CS 374

NP-Completeness

Claim: $ACCEPT_{NP} \in \mathbb{NP}$

$$V_{\text{Accept}} = \{ (z, x, m, 1^t, w) \mid w \in \{0, 1\}^m \text{ and }$$

 $M_z \text{ accepts } (x, w) \text{ within } t \text{ steps } \}$

Claim: $\forall L \in \mathbb{NP}, L \leq_{poly} ACCEPT_{NP}$

Let $V \in P$ and polynomial p be s.t. $L = \{ x \mid \exists w \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,w) \in V \}$

Polynomial-time reduction: $f(x) = (z, x, m, 1^t)$ where z s.t. M_z is a p'-time TM for V, m = p(|x|), $t = p'(|(x, 1^m)|)$

NP-Completeness

Consider the language

 $ACCEPT_{NP} = \{ (z, x, m, 1^t) \mid \exists w \in \{0,1\}^m \text{ s.t.} \}$ M_z accepts (x,w) within t steps }

> $ACCEPT_{NP} \in \mathsf{NP}$ $\forall L \in \mathbb{NP}, L \leq_{poly} ACCEPT_{NP}$

Implication: $ACCEPT_{NP} \in \mathbf{P} \Leftrightarrow \mathbf{NP} = \mathbf{P}$

 $L \leq_{poly} L' \text{ and } L' \in \mathbf{P}$ $\Rightarrow L \in \mathbf{P}$

A language A is said to be **NP**-complete if $A \in \mathbf{NP}$ $\forall L \in \mathbf{NP}, L \leq_{poly} A$

Any NP-complete language is one of the hardest **NP** languages: if it has a T(n)-time algorithm, no **NP** language needs more than p(n) + T(p(n)) time for some polynomial p (that depends on the language)

If any NP-complete language is in P, then P = NP

 $ACCEPT_{NP}$ is an **NP**-complete language

Next time: Several *natural* problems are **NP**-complete languages

More than 50 years of effort into finding efficient algorithms for many of these problems

Now widely believed that such algorithms do not exist

Non-Deterministic TM

Recall that in a TM the finite control is implemented as (essentially) a DFA

Non-Deterministic TM (NTM): Allow the finite control to be an NFA

$$\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

From an ID the TM can move to 0 or more IDs by following each possible transition in the set returned by δ

Non-Deterministic TM

As in the case of NFAs, we say an NTM accepts a string if there exists some execution path starting from the initial ID that accepts (even if some others reject)

Non-Deterministic TM

A normal (deterministic) TM can simulate an NTM execution by doing a breadth-first search on the above (implicit) graph

Polynomial-Time NTM

There is a polynomial p s.t., on any input x, every execution thread should finish within p(|x|) steps

Polynomial-Time NTM

Any path in the execution tree can be specified by the sequence of non-deterministic choices: a k-ary string of length p(n) (=depth), where k is max $|\delta(q,a)|$

NP and NTM

 $L \in \mathbf{NP} \Leftrightarrow \exists$ a polynomial-time NTM M s.t. L(M)=L

- \Rightarrow : Suppose *L* has certificate language $V \in \mathbf{P}$. NTM *M* behaves as follows:
- write down a "certificate" w of the appropriate length, writing 0 or 1 non-deterministically at each step.
- deterministically check if $(x,w) \in V$, and accept if so.

M accepts x iff $\exists w$ (of the correct length) s.t. $(x,w) \in V$.

 \Leftarrow : Define V s.t. $(x,w) \in V$ iff when M is run with start ID for input x, using w as the string of non-deterministic choices, it accepts.