
P and NP

Lecture 22

1

C
S

37
4

Today

Computational Complexity

P, NP, PSPACE, EXP

NP-completeness

Non-deterministic Turing Machines

2

C
S

37
4

Resource Bounded Computation
Interested in solving problems using limited time/memory

T-time TM:  
On any input of length n, halts within T(n) steps.

Polynomial-Time TM:  
T-time TM where T is some polynomial

e.g., T(n) = 2n + 100, T(n) = 5n2 + 1, T(n) = n42 + 1.

S-Space TM:  
On any input of length n, uses at most S(n) tape cells.  

Polynomial-Space TM: When S is a polynomial
3

C
S

37
4

P, PSPACE, EXP
Sub-classes of R, the class of all

decidable languages

P = class of languages decided
by polynomial-time TMs.

PSPACE = class of languages
decided by polynomial-space

TMs.

EXP = class of languages
decided by exponential-time

TMs.
4

R
R.E.

EXP

PSPACE

P

O(2nc)

C
S

37
4

P as feasible computation
The most standard proxy for “feasible” computation

Caveat: n50 is not feasible, even for small values of n.

Why not model say, n4 as feasible?

Will be model dependent:  
depends on 1-tape TM vs. k-tape TM, TM vs. RAM,  

size of the tape alphabet etc.

Typically, polynomial overheads when simulating one model in
another. Hence P is the same class in all such models.

Typically, for interesting problems in P, reasonably efficient
algorithms have been developed.  

(But this is provably impossible for all of P.)
5

C
S

37
4

NP
An important class of languages

Informally: NP is the class of languages with an
efficiently verifiable certificate of membership

e.g., LSudoku = Set of all generalized (n2×n2) Sudoku
puzzles with a solution

Membership certificate: a solution.  
Efficiently verifiable  

(Linear time to check that all columns, rows and the n×n

cells satisfy the rules in each solution)

6

C
S

37
4

NP
Informally: NP is the class of languages with an
efficiently verifiable certificate of membership

Intuitively, for many problems it is much easier to
verify a solution than to find one (or to find out that

one doesn’t exist)

Major Open Question:  
Prove that this is the case for even one language!

7

May not have an
easy-to-verify
certificate of  

non-membership

C
S

37
4

NP
Formally:

L ∈ NP iff ∃ V ∈ P and a polynomial p s.t. 
L = { x | ∃ w ∈ {0,1}p(|x|) s.t. (x,w) ∈ V }

Note: We insist |w| is polynomial in |x|, so that the
verification can be done in time polynomial in |x|:

Suppose V can be decided by a pʹ time-bounded TM.  
Then time to verify the certificate:

pʹ(|(x,w)|) = O(pʹ(|x|+|w|)) = O(pʹ(|x|+p(|x|))) ≤ pʹʹ(|x|)  
for some polynomial pʹʹ

8

C
S

37
4

NP: Examples

All the languages in P

Suppose L ∈ P  
Let V = { (x,ε) | x ∈ L } so that  

L = { x | ∃w ∈ {0,1}0 s.t. (x,w) ∈ V } 
where V ∈ P

P ⊆ NP

9

L in NP : there is V in P s.t.  
L = { x | ∃ w (short) s.t. (x,w) ∈ V }

C
S

37
4

NP: Examples

Checking if there is a structure

LHamilton = { G | G has a Hamiltonian Cycle}

VHamilton = { (G,C) | C is a Hamiltonian Cycle in G }

LClique = { (G,t) | G has a subgraph isomorphic to Kt }

VClique = { (G,t,H) | H is a subgraph of G isomorphic to Kt }

10

L in NP : there is V in P s.t.  
L = { x | ∃ w (short) s.t. (x,w) ∈ V }

C
S

37
4

NP: Examples

Checking if there is a sufficiently good solution to an
optimization problem

LTSP = { (G,t) | G is a graph with a TSP tour of cost ≤ t }
VTSP = { (G,t,P) | P is a TSP tour in G with cost ≤ t }

11

L in NP : there is V in P s.t.  
L = { x | ∃ w (short) s.t. (x,w) ∈ V }

Traveling Sales-person
Problem

C
S

37
4

NP: Examples

In an axiomatic system, checking if a mathematical
theorem has a proof (with at most t characters)

LProve = { (Π,t) | Π is a statement with a proof of size ≤ t }
VProve = { (Π,t,P) | P is a proof of Π with size ≤ t }

12

L in NP : there is V in P s.t.  
L = { x | ∃ w (short) s.t. (x,w) ∈ V }

C
S

37
4

NP: Examples

Breaking a Public-Key Encryption Scheme: Recovering
the secret-key from a public-key

LPKE-Keys = { (PK,w) | PK is a public-key whose secret-key
has w as a prefix }

VPKE-Keys = { (PK,w,SK) | secret-key SK yields public-key PK
and has prefix w }

13

L in NP : there is V in P s.t.  
L = { x | ∃ w (short) s.t. (x,w) ∈ V }

C
S

37
4

If P = NP, then?
Suppose any L ∈ NP can be decided in time say,

quadratic in the time to decide its certificate language V

Can solve large-scale optimization problems (save large
amounts of energy, material and other resources)

Prove many outstanding mathematical theorems (if they
have proofs short enough for mathematicians to derive

manually)

Make Public-Key Cryptography impossible

We believe P≠NP, and that these problems don’t have
polynomial-time algorithms!14

C
S

37
4

Complexity of NP

Best known algorithms for many problems in NP take
exponential time

How hard can problems in NP be?  
Do they all have at least exponential time algorithms?

Yes!

To check if x ∈ L, can try every possible value of w  
and check if (x,w) ∈ V

15

C
S

37
4

NP ⊆ PSPACE
For any L ∈ NP, a polynomial-space TM ML.

Run through every possible value of w ∈ {0,1}p(|x|)
and call a polynomial-time subroutine MV to check if

(x,w) ∈ V.

Suppose MV is a pʹ-time TM. Total space?

MV is a pʹ-space TM too.

ML is a pʹʹ-space TM, where
pʹʹ(n) = O(p(n) + pʹ(n+p(n)))

16

C
S

37
4

P ⊆ NP ⊆ PSPACE ⊆ EXP
Claim: PSPACE ⊆ EXP

For L ∈ PSPACE, suppose  
a p-space TM ML with d states and |Γ| = k

Number of distinct IDs on an input of size n?

d × p(n) × kp(n) ≤ 2pʹ(n)

If ML doesn't halt within that many steps,  
it must have repeated some ID ⇒ in an infinite loop!

An exponential-time TM for L: Simulate ML for 2pʹ(n) steps.  
If ML has not halted already, halt and reject.

17

C
S

37
4

P ⊆ NP ⊆ PSPACE ⊆ EXP

It is known that P ≠ EXP

(Time-Hierarchy Theorem)

Hence, at least one
containment in the chain  

P ⊆ NP ⊆ PSPACE ⊆ EXP  
is strict.

All 3 widely believed to be
strict

18

R
R.E.

EXP

PSPACE

P

NP

C
S

37
4

Polynomial-Time Reduction

Suppose f is a reduction from L1 to L2

We say f is a polynomial-time reduction if f can be
computed by a polynomial-time TM

In that case we write L1 ≤poly L2

Positive Implication: If L1 ≤poly L2 and L2 ∈ P then L1 ∈ P

Note: | f(x) | ≤ p(|x|) for a polynomial p

19

C
S

37
4

NP-Completeness

20

Consider the language

 ACCEPTNP = { (z, x, m, 1t) | ∃w ∈ {0,1}m s.t.  
 Mz accepts (x,w) within t steps }

∀ L ∈ NP, L ≤poly ACCEPTNP
ACCEPTNP ∈ NP

C
S

37
4

NP-Completeness
Claim: ACCEPTNP ∈ NP

 VAccept = { (z, x, m,1t,w) | w ∈ {0,1}m and  
 Mz accepts (x,w) within t steps }

21

Claim: ∀ L ∈ NP, L ≤poly ACCEPTNP

Let V ∈ P and polynomial p be s.t.  
L = { x | ∃ w ∈ {0,1}p(|x|) s.t. (x,w) ∈ V }

Polynomial-time reduction: f(x) = (z, x, m, 1t)  
where z s.t. Mz is a pʹ-time TM for V, m=p(|x|), t=pʹ(|(x,1m)|)

C
S

37
4

NP-Completeness

Implication: ACCEPTNP ∈ P ⇔ NP = P

22

Consider the language

 ACCEPTNP = { (z, x, m, 1t) | ∃w ∈ {0,1}m s.t.  
 Mz accepts (x,w) within t steps }

∀ L ∈ NP, L ≤poly ACCEPTNP
ACCEPTNP ∈ NP

L ≤poly Lʹ and Lʹ ∈ P
⇒ L ∈ P

C
S

37
4

NP-Completeness

Any NP-complete language is one of the hardest NP
languages: if it has a T(n)-time algorithm, no NP
language needs more than p(n) + T(p(n)) time for

some polynomial p (that depends on the language)

If any NP-complete language is in P, 
then P = NP

23

A language A is said to be NP-complete if 
A ∈ NP 

∀ L ∈ NP, L ≤poly A

C
S

37
4

NP-Completeness

ACCEPTNP is an NP-complete language

Next time: Several natural problems are  
NP-complete languages

More than 50 years of effort into finding efficient
algorithms for many of these problems

Now widely believed that such algorithms do not
exist

24

C
S

37
4

Non-Deterministic TM
Recall that in a TM the finite control is implemented as

(essentially) a DFA

Non-Deterministic TM (NTM): Allow the finite control to
be an NFA

δ : Q × Γ → �(Q × Γ × { L, R })

From an ID the TM can move to 0 or more IDs by
following each possible transition in the set returned

by δ

25

C
S

37
4

Non-Deterministic TM

26

ID0

As in the case of NFAs, we say an NTM accepts a
string if there exists some execution path starting from
the initial ID that accepts (even if some others reject)

C
S

37
4

Non-Deterministic TM

27

ID0

A normal (deterministic) TM can simulate an NTM
execution by doing a breadth-first search on the above

(implicit) graph

C
S

37
4

Polynomial-Time NTM

28

ID0

There is a polynomial p s.t., on any input x, every
execution thread should finish within p(|x|) steps

C
S

37
4

Polynomial-Time NTM

29

ID0

Any path in the execution tree can be specified by the
sequence of non-deterministic choices: a k-ary string

of length p(n) (=depth), where k is max |δ(q,a)|

C
S

37
4

NP and NTM

⇒ : Suppose L has certificate language V ∈ P.  
NTM M behaves as follows:
‣ write down a “certificate” w of the appropriate length,  

writing 0 or 1 non-deterministically at each step.
‣ deterministically check if (x,w) ∈ V, and accept if so.
M accepts x iff ∃ w (of the correct length) s.t. (x,w) ∈ V.

⇐ : Define V s.t. (x,w) ∈ V iff when M is run with start ID for
input x, using w as the string of non-deterministic choices,
it accepts.

30

L ∈ NP ⇔ ∃ a polynomial-time NTM M s.t. L(M)=L

