Reductions

Mahesh Viswanathan

April 14, 2016

A reduction is a way of converting one problem into another problem such that a solution to the second
problem can be used to solve the first problem. We say the first problem reduces to the second problem.
Reducing problem A to a problem B shows that an algorithmic solution to problem B implies an algorithmic
solution to problem A. Thus reductions provide a mechanism to compare the computational difficulty of two
problems — if A reduces to B then A is (computationally) no more difficult than B, or (contrapositively) B
is (computationally) at least as difficult as A. We will make precise these notions and give many examples
of reductions.

But first, what are reductions? What does it mean to say that problem A reduces to B?

Definition 1. A reduction (a.k.a. mapping reduction/many-one reduction) from a language A C X* to a
language B C ¥* is a computable function f : ¥* — ¥* such that

w € A if and only if f(w) € B

In this case, we say A is reducible to B, and we denote it by A <, B.

A reduction defined by a function f needs to be computable. What that means is that there is a Turing
machine M such that on any input w, M halts with f(w) on its tape. The requirement that M halts is
important. Given the Church-Turing thesis, we could also say that a reduction f is computable if we can
write a Java function computef of type String — String such that computef(w) always halts and returns
f(w).

Intuitively, a reduction is a transformation f of inputs of A to inputs of B. We have two requirements on
this transformation. First f needs to be computable. Second, solving problem A on input w should yield the
same answer as solving problem B on the transformed input f(w); this is captured by the fact that w € A
iff f(w) e B

Mapping/many-one reductions (Definition 1) are only one form of reductions. In this course, they are
the only type of reductions we will consider, and so we will often drop “mapping/many-one” and just refer
to them as reductions.

Example 1. Let us a look at the first formal example of a reduction. Recall the following two problems

SELFREJECT = {(M) | M does not accept (M)}
AccCePT = {{(M,w) | M accepts w}

Recall that we have shown that SELFREJECT is not recursively enumerable (and hence also undecidable),
while ACCEPT is recursively enumerable because the universal Turing machine accepts/recognizes/solves
ACCEPT. Let us consider the complement of SELFREJECT, which formally is

SELFREJECT = {(M) | M accepts (M)}

We will show that SELFREJECT <,, ACCEPT. What this requires is for us to come up with a function that
takes input for SELFREJECT (i.e., source code of TM /program) and produces an input for ACCEPT (i.e., a

1Recall that a language A defines a decision problem: Given input w, determine if w € A.



pair of program + input). Let us define f as follows: f({(M)) = (M, (M)). In other words, given a program
M, f returns a pair that is (M, (M)).

To prove that f is a reduction, we need to show two things. First that f is computable, i.e., we need
to come up with a program M that computes f. The program My simply “copies” the input string (M)
(source code of a program/TM) twice to generate the string (M, (M)). This program M will clearly halt
no matter what M is because all it is doing is coping the source code.

The second thing we need to argue is that (M) € SELFREJECT iff f((M)) € ACCEPT. Observe that
(M) € SELFREJECT iff M accepts (M) (by definition of the language SELFREJECT) iff (M, (M)) € ACCEPT
(by definition of the language AcCePT) iff f({M)) € ACCEPT, since f((M)) = (M, (M))

Many of the examples in these notes involve languages/problems where the input is the source code of
a program/TM. In addition, there is also the separate program that computes the reduction f itself. When
carrying out reductions it is important to not get confused between all of these. For example, in Example ,
there is the program M which is input to SELFREJECT, and there is program (which also happens to M)
that the reduction produces as input to ACCEPT. There is a third program, namely My, that computes the
function f, by simply copying its input string twice to produce an output. It is best to clearly separate all
these different programs both while thinking and when writing solutions, by giving them names (like M,
M) instead of refering to them as “the program” or “that program” or “it”.

1 Properties of Reductions

The primary power of reductions comes from the fact that reductions allow us compare the computational
difficulty of problems. This is also captured in the way we denote reductions as <,,. When a problem A
is reduced to B, we write it as A <,, B to suggest that “A is no more difficult than B”. This is formally
proved in the next result.

Theorem 1. Suppose A <,, B. Then the following are true.
1. If B is recursively enumerable then A is recursively enumerable.
2. If B is decidable then A is decidable.

Proof. Suppose f is a reduction from A to B and f is computed by Turing machine M;. Suppose Mp is
a TM such that L(Mp) = B (i.e., Mp accepts/recognizes/solves B). So we have Mp accepts u iff v € B.
Consider the following program M 4

MA(’LU)
u=Mj(w)
return Mp(u)

Informally, on input w, M4 calls My to compute u = f(w), then calls Mp on u, and returns “accept” if
Mp accepts u and rejects otherwise. Since My computes f, it means that My halts on all inputs (from the
definition of what it means for a function to be computable) and the step assigning u terminates. Thus, M4
will halt w if and only if Mp halts on u. Moreover, since f is a reduction, we have w € A iff f(w) € B. This
gives us the following line of reasoning: M4 accepts w iff Mp accepts u = f(w) iff u= f(w) € B iff w € A.
Thus, M4 solves the right problem, i.e., L(M4) = A, and A is recursively enumerable. Further, since M4
halts whenever Mp halts, if we know that Mp decides B (i.e., halts on all inputs and L(Mp) = B) then
M4 decides A, thus completing the proof of both statements.

It is important to note how critical our assumption that M, (the program computing f) halts on all
inputs is. Without that assumption, the step computing u may not halt, and then M4 may not halt on
inputs w € A, simply because the step computing u failed to halt. O

The contrapositive of Theorem 1, which is often the way reductions are used, says that if A <,, B then
B is at least as difficult as A. Thus, if A is a computationally hard problem, then so is B. This is captured
by the following corollary.



Corollary 2. Suppose A <,, B. Then the following are true.
1. If A is not recursively enumerable then B is not recursively enumerable.
2. If A is undecidable then B is undecidable.

Proof. These statements are just contrapositives of Theorem 1. O
Given the reduction in Example , it implies that ACCEPT is undecidable.

Proposition 3. ACCEPT is undecidable.

Proof. Observe that since SELFREJECT is not recursively enumerable, it is also not decidable. Moreover since
decidable languages are closed under complementation (Discussion Lab 21), SELFREJECT is also undecidable.
From Example , we have SELFREJECT <,, ACCEPT. Finally, using Corollary 2, we have ACCEPT is
undecidable because SELFREJECT is undecidable. O

Proposition 3 is often the way reductions are used — we prove a problem to be “difficult” (undecidable
or not recursively enumerable) by showing that it is at least as difficult as some other problem that is known
to be difficult. Here we conclude that ACCEPT is difficult (undecidable) because it is at least as difficult as
SELFREJECT that is known to be undecidable.

We conclude this section with a couple of other important properties about reductions.

Theorem 4. If A <,, B then A <,, B.

Proof. Let f be a reduction from A to B computed by My. We claim that f is also a reduction from A to
B. Clearly, we know that f is computed by M¢. And we have,

we Aiff w ¢ Aiff f(w) ¢ B (since f is a reduction from A to B) iff f(w) € B

Theorem 5. If A <,, B and B <,, C then A <,,, C.

Proof. Suppose f is a reduction from A to B, computed by program/TM My, and g is a reduction from B
to C, computed by program/TM M,. To prove A <,, C we need to define a reduction h from A to C.
Take h = go f, i.e., for every w, h(w) = g(f(w)). To prove that h is reduction, we need to show that h is
computable, and that h satisfies the properties of a reduction. We do this in order. Observe that

M (w)
u = Mg(w)
v = My(u)
return v

always halts (because My and M, always halt) and computes the function h = g o f. Next, we have
w € A iff f(w) € B (since f is a reduction from A to B) iff g(f(w)) € C (since g is a reduction from B to
C) iff h(w) € C (since h(w) = g(f(w))). Thus, h is a reduction from A to C. O

2 Examples

We now give more examples of reductions and their use in proving problems to be difficult.
Proposition 6. The language HALT = {(M,w) | M halts on w} is undecidable.

Proof. We will show that ACCEPT <,, HALT. To do this we need to come up with a function f that takes
inputs for problem ACCEPT (i.e., pairs (M,w) of source code + input) and produces inputs for problem
HALT (i.e., pairs (M’,w’)). As a first step, let us describe a program g(M), where M is a TM.



9(M)(x)
result = M(z)
if (result = accept)
return accept
else if (result = reject)
while true do

The program g(M) does the following: On input string x, it calls M. Now M may or may not halt on
2. If M halts and returns accept then g(M) also stops and returns accept. On the other hand, if M halts
and returns reject then g(M) enters an infinite loop and does not halt.

We are now ready to define the reduction from ACCEPT to HALT: f((M,w)) = (g9(M),w). To complete
the proof, we need to argue that f is computable and f satisfies properties of a reduction.
Computing f: The program M; computing f does the following. Given the source code M and input
w, My will generate the source code g(M) given above, and copy the string w to the output. Notice, to
generate the source code for g(M) only involves in producing the text above. It does not involving running
the program M; when g(M) is executed it will call M. Thus, the program M} is a very simple program that
involves producing a fixed text (namely the source code of g(M) above) and coping the string w. Hence, it
always halts, no matter what string (M, w) it is called on.
f is a reduction: Suppose (M, w) € ACCEPT. Then by definition, M accepts w (and halts). When g(M)
is run with input w, g(M) will call M on w which will halt and return accept, and g(M) will then go the
then-branch of the conditional and accept (and halt). Thus, f({(M,w)) = (g(M),w) € HALT. On the other
hand, suppose (M, w) ¢ ACCEPT. Then M does not accept w. This could be because either M does not
halt on w or M halts on w but returns reject. Now notice that when g(M) is run with input w, if M does
not halt on w, neither does g(M). And if M halts on w and rejects then g(M) will go to the else-branch
and enter an infinite loop. Thus in either case, we have g(M) does not halt on w. Putting this together we
have, (M, w) ¢ ACCEPT then f({(M,w)) = (g(M),w) ¢ HALT. So

(M,w) € Acckpt iff f((M,w)) € HALT

Finally, since AcCEPT <,, HALT and ACCEPT is undecidable (Proposition 3), we can conclude, using
Corollary 2, that HALT is undecidable.

Before we conclude, it is useful to observe that if we had taken the reduction to be h({M,w)) = (M, w)
then it does not work. h is clearly computable, but we don’t have (M, w) ¢ ACCEPT implies (M, w) ¢ HALT.
The reason is if (M, w) ¢ ACCEPT, then it is possible that M halts and rejects, in which case h({M,w)) =
(M,w) € HALT. O

It is sometimes confusing to know which direction to reduce problems. It is useful to remember the
following mnemonic. We always denote reductions by <,,. The first problem (the one being “reduced”) is
written to the left of <, and the second problem (the one to which we are reducing) is written to the right
of <., and we always transform inputs from left-to-right (first problem input changed to second problem
inputs). This mnemonic also helps determine what needs to be done in a certain situation. Suppose we want
to prove a problem to be “difficult” then we need to lower bound it, i.e., write it to the right of the reduction
symbol. So we need to find a well known difficult problem A and show A <,, L. On the other hand, we
want to show that L is “easy” then we need to upper bound it, i.e., write it to left of the reduction symbol.
So we need to find a well known easy problem B and show L <,, B. In Proposition 6, we we wanted to
show that HALT is difficult (undecidable) we lower bounded it by showing ACCEPT <,, HALT.

Proposition 7. The language Ery = {{M) | L(M) = 0} is not recursively enumerable.

Proof. We want to prove that Ery is diffcult (not r.e.) and so we want to lower bound it by a language that
is not r.e. We know one example of such language SELFREJECT, so we will show SELFREJECT <,, ETM.
This requires us to transform an input to SELFREJECT (source code of program/TM (M)) to an input for
Erym (another source code (N)). For a program M, let us define f({M)) to be the following program



F(M)) ()
result = M((M))
if result = accept then
return accept
else if result = reject then
return reject

Informally, f({M)) does the following: It ignores its input x, runs M on (M). If M halts and accepts
then f(M) accepts x, and if M halts and rejects then f(M) rejects x.

Observe that the function f is computable. The program My computing f will simply output the above
program, when given (M) as input. Again, it is useful to remember that M; does not execute the code
f(M); it simply produces it, and so My always halts.

Next, we need to argue that (M) € SELFREJECT iff f((M)) € Erm. Suppose (M) € SELFREJECT then
(by definition of SELFREJECT) that means that M does not accept (M). There are two possible reasons for
this. If M does not halt on (M) then f({M)) also does not halt on any input = and so L(f((M))) = 0.
If M halts and rejects (M) then f({M)) will enter the else branch and reject input = (no matter what =
is). Thus, L(f((M))) = 0 again, and so f({M)) € Erpm. On the other hand, if (M) ¢ SELFREJECT then
it means that M (halts and) accepts (M). In this case, f({M)) will go to the then-branch and accept z.
In this case L(f({M))) = * # (). Putting all these observations together we have (M) € SELFREJECT iff
f(M)) € Epm.

Finally, since SELFREJECT is not recursively enumerable, and SELFREJECT <,, ET), from Corollary 2,
we can conclude that Ery is not recursively enumerable. O]

Proposition 8. The language REGULAR = {(M) | L(M) is regular} is undecidable.

Proof. Our proof will rely on showing that ACCEPT <,,, REGULAR. We need to transform inputs to ACCEPT
(pairs of program-+input) into inputs to REGULAR (program). For a pair (M, w) define f((M,w)) to be the
program

FUM, w)) (@)
if x is of the form 0"1" for some n
return accept
else
result = M(w)
if result = accept
return accept
else
return reject

The program f({M,w)) does the following when executed. If z is a string of 0’s followed by 1s where the
number of Os is equal to the number of 1s (i.e., x is of form 0™1™) then x is accepted. Otherwise, we run M
on w, and accept x only if M accepts w.

It is straightforward to see that there is a program My that halts on all inputs and produces the source
code for f({(M,w)) on input (M,w). Next, observe that if M does not accept w, then the only strings
which f((M,w)) accepts are those of the form 071", and so L(f({M,w))) = {0"1™ |n > 0}. In this
case, L(f({M,w))) is non-regular and so f({M,w)) € REGULAR. On the other hand, if M accepts w then
F({(M,w)) accepts every string; so L(f({M,w))) = ¥* which is regular. Putting it together we have

(M,w) € AccepT iff f({M,w)) € REGULAR

Finally, since ACCEPT <,, REGULAR and ACCEPT is undecidable, REGULAR is undecidable.

Is REGULAR recursively enumerable? It turns out we can prove an even stronger result that shows that
REGULAR is not recursively enumerable. We can do this by showing SELFREJECT <,, REGULAR. For a
program M, define the program g(M) to be



g(M)(x)
result = M((M))
if result = accept
if z is of the form 0"1"
return accept
return reject

g(M) runs M on (M). If M accepts then g(M) accepts z if it is of the form 0"1™. Otherwise, g(M) does
not accept; either it does not halt if M does not halt, or it rejects.

Clearly the function g is computable. Moreover, we have if (M) € SELFREJECT then M does not
accept (M), which means that g(M) does not accept any string. So L(g(M)) = 0 is regular. On the other
hand, if (M) ¢ SELFREJECT then M accept (M) and so g(M) accepts exactly the strings of the form
0"1". In this case we will have L(g(M)) = {0"1" |n > 0} ¢ REGULAR. Thus, (M) € SELFREJECT iff
g(M) € REGULAR. Finally, since SELFREJECT is not recursively enumerable, we have REGULAR is not
recursively enumerable. O

Proposition 9. EQpy = {(M1, Ma) | L(My) = L(Ma)} is not r.e.

Proof. Recall, from Proposition 7, that ETy; is not recursively enumerable. We will prove this proposition
by showing Etm <, EQmy. Consider the following program

My(z)

return reject

No matter what the input is, My rejects it. Thus, L(My) = 0. Define the reduction from Ery to EQpyg
as follows: f((M)) = (M, My). Again it is easy to see that f is computable: the program M; computing

f, just copies its input (M) onto its output and also writes down the code for My. Further, (M) € Eryy iff
L(M) =0 = L(My) iff (M, My) € EQrp- O



