CS 374 Lab 19: More Shortest Paths

Date: March 30, 2018.

1. Let $G=(V, E)$ be a directed graph with edge length $\ell: E \rightarrow \mathbb{R}^{+}$. A subset of the edges $E^{\prime} \subseteq E$ are considered risky. Describe an algorithm that given $G=(V, E)$, the edge lengths ℓ, the risky subset E^{\prime}, a node s and an integer h finds for each node $v \in V$ the shortest path distance from s to v among all paths that contain at most h risky edges.
2. Now suppose there are two different types of risky edges: blue and red. Let $E_{1} \subset E$ be the blue risky edges and $E_{2} \subset E$ be the red risky edges. You want to solve the same single-source shortest path problem but now the paths are constrained to use at most h_{1} blue risky edges and at most h_{2} red risky edges.
