CS 374 Lab 12: Backtracking

Date: February 28, 2018.

A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string ϵ are all substrings of the string SUBSEQUENCE;
- SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe recursive backtracking algorithms for the following problems. Don't worry about running times.

1. Given an array $A[1 . . n]$ of integers, compute the length of a longest increasing subsequence. A sequence $B[1 . . \ell]$ is increasing if $B[i]>B[i-1]$ for every index $i \geq 2$. For example, given the array

$$
\langle 3, \underline{\mathbf{1}}, \underline{\mathbf{4}}, 1, \underline{\mathbf{5}}, 9,2, \underline{\mathbf{6}}, 5,3,5, \underline{\mathbf{8}}, \underline{\mathbf{9}}, 7,9,3,2,3,8,4,6,2,7\rangle
$$

your algorithm should return the integer 6 , because $\langle 1,4,5,6,8,9\rangle$ is a longest increasing subsequence (one of many).
2. Given an array $A[1 . . n]$ of integers, compute the length of a longest decreasing subsequence. A sequence $B[1 . . \ell]$ is decreasing if $B[i]<B[i-1]$ for every index $i \geq 2$. For example, given the array

$$
\langle 3,1,4,1,5, \underline{\mathbf{9}}, 2, \underline{\mathbf{6}}, 5,3, \underline{\mathbf{5}}, 8,9,7,9,3,2,3,8, \underline{\mathbf{4}}, 6, \underline{\mathbf{2}}, 7\rangle
$$

your algorithm should return the integer 5 , because $\langle 9,6,5,4,2\rangle$ is a longest decreasing subsequence (one of many).
3. Given an array $A[1 \ldots n]$ of integers, compute the length of a longest alternating subsequence. A sequence $B[1 \ldots \ell$ is alternating if $B[i]<B[i-1]$ for every even index $i \geq 2$, and $B[i]>B[i-1]$ for every odd index $i \geq 3$. For example, given the array

$\langle\underline{\mathbf{3}}, \underline{\mathbf{1}}, \underline{\mathbf{4}}, \underline{\mathbf{1}}, \underline{\mathbf{5}}, 9, \underline{\mathbf{2}}, \underline{\mathbf{6}}, \underline{\mathbf{5}}, 3,5, \underline{\mathbf{8}}, 9, \underline{\mathbf{7}}, \underline{\mathbf{9}}, \underline{\mathbf{3}}, 2,3, \underline{\mathbf{8}}, \underline{\mathbf{4}}, \underline{\mathbf{6}}, \underline{\mathbf{2}}, \underline{\mathbf{7}}\rangle$

your algorithm should return the integer 17 , because $\langle 3,1,4,1,5,2,6,5,8,7,9,3,8,4,6,2,7\rangle$ is a longest alternating subsequence (one of many).

