CS 374 Lab 1: Preliminaries, Strings, and Languages

Date: January 17, 2018.

Recall the following notions: Sets, set building notation, subset, proper subset, empty set, Venn diagram, Cartesian product of sets, power set of a set.

Problem 1. [Category: Comprehension] For each of the following statements answer True, False, or Meaningless.

- $\{a, b, c\} \cap\{d, e\}=\emptyset$
- $\{a, b, c\} \cap\{d, e\}=\{\emptyset\}$
- $\{a, b, c\} \cup\{d, a, e\}=\{a, b, c, d, e\}$
- $\emptyset \in\{\emptyset, a\}$
- $S \in \mathcal{P}(S)$, where S is a set and $\mathcal{P}(S)$ is the powerset of S
- $a \in \mathcal{P}(\{a\})$
- $\{a, b\}+\{c, d\}=\{a, b, c, d\}$
- $\{\{a, a\}\}=\{a, a\}$
- $\{\{a\},\{a\}\}=\{a, a\}$
- $\{a, b\} \times\{b\}=\{(a, b),(b, b)\}$
- $\{a, b\} \times\{c, d\}=\{c, d\} \times\{a, b\}$

Problem 2. [Category: Comprehension + Proof] Let us define a set U_{n} inductively as follows.

- $U_{1}=\{1\}$
- $U_{i}=U_{i-1} \cup\left\{\max \left(U_{i-1}\right)+2(i-1)+1\right\}$

Answer the following questions about the set U_{n}.

1. What is U_{2} ? What is U_{3} ?
2. Is $U_{n-1} \in U_{n}$?
3. What is U_{n} ? Prove your answer.

Problem 3. [Category: Comprehension+Proof] For a string $w \in\{0,1\}^{*}, w^{c}$ is inductively defined as follows.

$$
w^{c}= \begin{cases}\epsilon & \text { if } w=\epsilon \\ 1 & \text { if } w=0 \\ 0 & \text { if } w=1 \\ \left(a^{c}\right)\left(u^{c}\right) & \text { if } w=a u \text { where } a \in\{0,1\}, u \in\{0,1\}^{*}\end{cases}
$$

1. What is $(10101)^{c}$?
2. Prove that for any strings $u, v \in\{0,1\}^{*}, u^{c} \cdot v^{c}=(u \cdot v)^{c}$.
3. Recall w^{R} denotes the reverse of string w defined as

$$
w^{R}= \begin{cases}\epsilon & \text { if } w=\epsilon \\ \left(u^{R}\right) \bullet a & \text { if } w=a \bullet u \text { where } a \in \Sigma, u \in \Sigma^{*}\end{cases}
$$

Prove that $\left(w^{c}\right)^{R}=\left(w^{R}\right)^{c}$.

