CS/ECE 374 A <4 Spring 2018

+ Homework 7 ey

Due Tuesday, March 27, 2018 at 8pm
(after Spring Break)

1. Consider the following solitaire game, played on a connected undirected graph G. Initially,
tokens are placed on three start vertices a, b,c. In each turn, you must move all three
tokens, by moving each token along an edge from its current vertex to an adjacent vertex.
At the end of each turn, the three tokens must lie on three different vertices. Your goal is to
move the tokens onto three goal vertices x, y, z; it does not matter which token ends up on

which goal vertex.

The initial configuration of the puzzle and the first two turns of a solution.

Describe and analyze an algorithm to determine whether this puzzle is solvable. Your
input consists of the graph G, the start vertices a, b, ¢, and the goal vertices x, y,z. Your
output is a single bit: TRUE or FALSE. [Hint: You've seen this sort of thing before.]

2. The following puzzles appear in my daughter’s elementary-school math workbook.!

Complete each angle maze below by tracing a path
PRACTICE from start to finish that has only acute angles.

/\
Finish
Start Finish
Start

Describe and analyze an algorithm to solve arbitrary acute-angle mazes.

You are given a connected undirected graph G, whose vertices are points in the plane
and whose edges are line segments. Edges do not intersect, except at their endpoints. For
example, a drawing of the letter X would have five vertices and four edges; the first maze
above has 13 vertices and 15 edges. You are also given two vertices Start and Finish.

Your algorithm should return TRUE if G contains a walk from Start to Finish that has
only acute angles, and FALSE otherwise. Formally, a walk through G is valid if, for any two
consecutive edges u—v—w in the walk, either Zuvw = 7 or 0 < Zuvw < 1/2. Assume you
have a subroutine that can determine in O(1) time whether two segments with a common
vertex define a straight, obtuse, right, or acute angle.

1Jason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https://www.beastacademy.
com/resources/printables.php for more examples.

https://www.beastacademy.com/resources/printables.php
https://www.beastacademy.com/resources/printables.php

CS/ECE 374 A Homework 7 (due March 27) Spring 2018

3. Rectangle Walk is a new abstract puzzle game, available for only 99¢ on Steam, iOS,
Android, Xbox One, Playstation 5, Nintendo Wii U, Atari 2600, Palm Pilot, Commodore 64,
TRS-80, Sinclair ZX-1, DEC PDP-8, ILLIAC V, Zuse Z3, Duramesc, Odhner Arithmometer,
Analytical Engine, Jacquard Loom, Horologium mirabile Lundense, Leibniz Stepped
Reckoner, Antikythera Mechanism, and Pile of Sticks.

The game is played on an n x n grid of black and white squares. The player moves a
rectangle through this grid, subject to the following conditions:
* The rectangle must be aligned with the grid; that is, the top, bottom, left, and right
coordinates must be integers.
* The rectangle must fit within the n x n grid, and it must contain at least one grid cell.
* The rectangle must not contain a black square.
¢ In a single move, the player can replace the current rectangle r with any rectangle r’

that either contains r or is contained in r.

Initially, the player’s rectangle is a 1 x 1 square in the upper right corner. The player’s goal
is to reach a 1 x 1 square in the bottom left corner using as few moves as possible.

s Rk

The first five steps in a Rectangle Walk.

Describe and analyze an algorithm to compute the length of the shortest Rectangle
Walk in a given bitmap. Your input is an array M[1..n,1..n], where M[i, j] = 1 indicates
a black square and M[i,j] = O indicates a white square. You can assume that a valid
rectangle walk exists; in particular, M[1,1] = 0 and M[n,n] = 0. For example, given the
bitmap shown above, (I think) your algorithm should return the integer 18.

CS/ECE 374 A Homework 7 (due March 27) Spring 2018

Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds
a positive integer number of gallons; the capacities of the three jars may or may not be
different. The professor then demands that you put exactly k gallons of water into one of
the jars (which one doesn’t matter), for some integer k, using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.

(c) Pour water from one jar to another, until either the first jar is empty or the second jar
is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of
water into the third jar in six steps:

e Fill the third jar from the lake.

* Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)

* Empty the first jar into the lake.

* Fill the second jar from the lake.

e Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
* Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of
operations that leave exactly k gallons in any jar, or reports correctly that obtaining
exactly k gallons of water is impossible. Your input consists of the capacities of the three
jars and the positive integer k. For example, given the four numbers 6,10, 15 and 13 as
input, your algorithm should return the number 6 (for the sequence of operations listed
above).

Solution: Let A, B, C denote the capacities of the three jars. We reduce the problem
to breadth-first search in the following directed graph:

eV = {(a,b,c) | 0<a<Aand0<b<Band0<c< C}. Each vertex corre-
sponds to a possible configuration of water in the three jars. There are
(A+1)(B+1)(C +1) = O(ABC) vertices altogether.

* The graph has a directed edge (a, b, c)—(a’, b’c’) whenever it is possible to move
from the first configuration to the second in one step. Specifically, there is an
edge from (a, b, ¢) to each of the following vertices (except those already equal
to (a, b,c)):

- (0, b,c) and (a,0,c) and (a, b,0) — dumping a jar into the lake
- (A, b,c) and (a,B,c) and (a, b, C) — filling a jar from the lake
(0,a+b,c) ifa+b<B
- {(a+b—B,B,c) ifa+b>B
(0,b,a+c) ifatc<C
- {(a+c—C,b,C) ifa+c>C

} — pouring from jar 1 into jar 2

} — pouring from jar 1 into jar 3

CS/ECE 374 A Homework 7 (due March 27) Spring 2018

(a+b,0,c¢) ifa+b <A
(Aba+b—Ac) ifa+b=A

~ {(a,O,b+c) ifb+c<C

} — pouring from jar 2 into jar 1

(a,b+c—C,C) ifb+c>C}_pouringfromja“imojar:a

(a+c,b,0) ifa+c<A
(A,b,a+c—A) ifa+c=A
(a,b+¢,0) ifb+c<B
(a,B,b+c—B) ifb+c>B

} — pouring from jar 3 into Jar 1

} — pouring from jar 3 into jar 2

Since each vertex has at most 12 outgoing edges, there are at most 12(A+ 1) x
(B+1)(C + 1) = O(ABC) edges altogether.

To solve the jars problem, we need to find the shortest path in G from the start
vertex (0,0,0) to any target vertex of the form (k,-,-) or (-, k,-) or (-,-,k). We can
compute this shortest path by calling breadth-first search starting at (0,0,0), and
then examining every target vertex by brute force. If BFS does not visit any target
vertex, we report that no legal sequence of moves exists. Otherwise, we find the target
vertex closest to (0, 0,0) and trace its parent pointers back to (0, 0,0) to determine
the shortest sequence of moves. The resulting algorithm runs in O(V + E) = O(ABC)
time.

We can make this algorithm faster by observing that every move either leaves
at least one jar empty or leaves at least one jar full. Thus, we only need vertices
(a, b,c) where eithera=0orb=0o0orc=0o0ora=Aor b=B orc=C; no other
vertices are reachable from (0, 0,0). The number of non-redundant vertices and edges
is O(AB + BC + AC). Thus, if we only construct and search the relevant portion of G,
the algorithm runs in O(AB + BC + AC) time. [|

Rubric: 10 points: standard graph reduction rubric (see next page)

* Brute force construction is fine.
—1 for calling Dijkstra instead of BFS

e max 8 points for O(ABC) time; scale partial credit.

CS/ECE 374 A Homework 7 (due March 27) Spring 2018

Standard rubric for graph reduction problems. For problems out of 10 points:
+ 1 for correct vertices, including English explanation for each vertex
+ 1 for correct edges
— 14 for forgetting “directed” if the graph is directed
+ 1 for stating the correct problem (in this case, “shortest path”)

— “Breadth-first search” is not a problem; it’s an algorithm!

+ 1 for correctly applying the correct algorithm (in this case, “breadth-first search from
(0,0,0) and then examine every target vertex”)

+ 1 for time analysis in terms of the input parameters.

+ 5 for other details of the reduction

— If your graph is constructed by naive brute force, you do not need to describe the
construction algorithm; in this case, points for vertices, edges, problem, algorithm,
and running time are all doubled.

— Otherwise, apply the appropriate rubric, including Deadly Sins, to the construction
algorithm. For example, for a solution that uses dynamic programming to build the
graph quickly, apply the standard dynamic programming rubric.

