
CS/ECE 374 A ] Spring 2018
Y Homework 3 Z

Due Tuesday, February 13, 2018 at 8pm

1. Describe context-free grammars for the following languages over the alphabet Σ= {0,1}.
For each non-terminal in your grammars, describe in English the language generated by
that non-terminal.

(a)
�

0a10b10c
�

� a+ b = c
	

(b)
�

w ∈ (0+1)∗
�

� #(0, w)≤ 2 ·#(1, w)
	

(c) Strings in which the substrings 00 and 11 appear the same number of times. For
example, 1100011 ∈ L because both substrings appear twice, but 01000011 6∈ L.
[Hint: This is the complement of the language you considered in HW2.]

2. Let inc: {0,1}∗ → {0,1}∗ denote the increment function, which transforms the binary
representation of an arbitrary integer n into the binary representation of n+ 1, truncated
to the same number of bits. For example:

inc(0010) = 0011 inc(0111) = 1000 inc(1111) = 0000 inc(ε) = ε

Let L ⊆ {0,1}∗ be an arbitrary regular language. Prove that inc(L) = {inc(w) | w ∈ L} is
also regular.

3. A shuffle of two strings x and y is any string obtained by interleaving the symbols in x
and y , but keeping them in the same order. For example, the following strings are shuffles
of HOGWARTS and BRAKEBILLS:

HOGWARTSBRAKEBILLS HOGBRAKEWARTSBILLS BHROAGKWEABRITLSLS

More formally, a string z is a shuffle of strings x and y if and only if (at least) one of the
following conditions holds:

• x = ε and z = y

• y = ε and z = x

• x = ax ′ and z = az′ where z′ is a shuffle of x ′ and y

• y = a y ′ and z = az′ where z′ is a shuffle of x and y ′

For any two languages L and L′ over the alphabet {0,1}, define

shuffles(L, L′) =
�

z ∈ {0,1}∗
�

� z is a shuffle of some x ∈ L and y ∈ L′
	

Prove that if L and L′ are regular languages, then shuffles(L, L′) is also a regular language.
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Solved problem

4. (a) Fix an arbitrary regular language L. Prove that the language half(L) := {w | ww ∈ L}
is also regular.

Solution: Let M = (Σ,Q, s, A,δ) be an arbitrary DFA that accepts L. We define a
new NFA M ′ = (Σ,Q′, s′, A′,δ′) with ε-transitions that accepts half(L), as follows:

Q′ = (Q×Q×Q)∪ {s′}
s′ is an explicit state in Q′

A′ = {(h, h, q) | h ∈Q and q ∈ A}

δ′(s′,ε) = {(s, h, h) | h ∈Q}
δ′(s′, a) =∅

δ′((p, h, q),ε) =∅

δ′((p, h, q), a) =
��

δ(p, a), h,δ(q, a)
�	

M ′ reads its input string w and simulates M reading the input string ww.
Specifically, M ′ simultaneously simulates two copies of M , one reading the left
half of ww starting at the usual start state s, and the other reading the right half
of ww starting at some intermediate state h.

• The new start state s′ non-deterministically guesses the “halfway” state
h = δ∗(s, w) without reading any input; this is the only non-determinism
in M ′.

• State (p, h, q) means the following:
– The left copy of M (which started at state s) is now in state p.
– The initial guess for the halfway state is h.
– The right copy of M (which started at state h) is now in state q.

• M ′ accepts if and only if the left copy of M ends at state h (so the initial
non-deterministic guess h= δ∗(s, w) was correct) and the right copy of M
ends in an accepting state.

�

Solution (smartass): A complete solution is given in the lecture notes. �

Rubric: 5 points: standard langage transformation rubric (scaled). Yes, the smartass
solution would be worth full credit.
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(b) Describe a regular language L such that the language double(L) := {ww | w ∈ L} is
not regular. Prove your answer is correct.

Solution: Consider the regular language L = 0∗1.
Expanding the regular expression lets us rewrite L = {0n1 | n≥ 0}. It follows
that double(L) = {0n10n1 | n≥ 0}. I claim that this language is not regular.
Let x and y be arbitrary distinct strings in L.
Then x = 0i1 and y = 0 j1 for some integers i 6= j.
Then x is a distinguishing suffix of these two strings, because

• x x ∈ double(L) by definition, but
• y x = 0i10 j1 6∈ double(L) because i 6= j.

We conclude that L is a fooling set for double(L).
Because L is infinite, double(L) cannot be regular. �

Solution: Consider the regular language L = Σ∗ = (0+1)∗.
I claim that the language double(Σ∗) = {ww | w ∈ Σ∗} is not regular.
Let F be the infinite language 01∗0.
Let x and y be arbitrary distinct strings in F .
Then x = 01i0 and y = 01 j0 for some integers i 6= j.
The string z = 1i is a distinguishing suffix of these two strings, because

• xz = 01i01i = ww where w= 01i , so xz ∈ double(Σ∗), but
• y x = 01 j01i 6∈ double(Σ∗) because i 6= j.

We conclude that F is a fooling set for double(Σ∗).
Because F is infinite, double(Σ∗) cannot be regular. �

Rubric: 5 points:

• 2 points for describing a regular language L such that double(L) is not regular.

• 1 point for describing an infinite fooling set for double(L):
+ ½ for explicitly describing the proposed fooling set F .

+ ½ if the proposed set F is actually a fooling set.

− No credit for the proof if the proposed set is not a fooling set.

− No credit for the problem if the proposed set is finite.

• 2 points for the proof:

+ ½ for correctly considering arbitrary strings x and y
− No credit for the proof unless both x and y are always in F .
− No credit for the proof unless both x and y can be any string in F .

+ ½ for correctly stating a suffix z that distinguishes x and y .

+ ½ for proving either xz ∈ L or yz ∈ L.

+ ½ for proving either yz 6∈ L or xz 6∈ L, respectively.

These are not the only correct solutions. These are not the only fooling sets for these
languages.
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Standard langage transformation rubric. For problems worth 10 points:

+ 2 for a formal, complete, and unambiguous description of the output automaton, including
the states, the start state, the accepting states, and the transition function, as functions
of an arbitrary input DFA. The description must state whether the output automaton is a
DFA, an NFA without ε-transitions, or an NFA with ε-transitions.

• No points for the rest of the problem if this is missing.

+ 2 for a brief English explanation of the output automaton. We explicitly do not want a
formal proof of correctness, or an English transcription, but a few sentences explaining
how your machine works and justifying its correctness. What is the overall idea? What do
the states represent? What is the transition function doing? Why these accepting states?

• Deadly Sin: No points for the rest of the problem if this is missing.

+ 6 for correctness

+ 3 for accepting all strings in the target language

+ 3 for accepting only strings in the target language

– 1 for a single mistake in the formal description (for example a typo)

• Double-check correctness when the input language is ∅, or {ε}, or 0∗, or Σ∗.
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