Basics of Complexity

"Complexity" = resources

- time
- space
- ink
- gates
- energy

Complexity is a function

- Complexity $=f$ (input size)
- Value depends on:
- problem encoding
- adj. list vs. adj matrix
- model of computation
- Cray vs TM ~O(n^{3}) difference

TM time complexity

Model: k-tape deterministic TM (for any k)
$D E F: M$ is $T(n)$ time bounded iff for every n, for every input w of size $n, M(w)$ halts within $T(n)$ transitions.
$-T(n)$ means $\max \{n+1, T(n)\}$ (so every TM spends at least linear time).

- worst case time measure
$-L$ recursive \rightarrow for some function T, L is accepted by a $T(n)$ time bounded TM.

TM space complexity

Model: "Offline" k-tape TM.
read-only input tape
k read/write work tapes initially blank

DEF: M is $S(n)$ space bounded iff for every n, for every input w of size $n, M(w)$ halts having scanned at most $S(n)$ work tape cells.

- Can use less than linear space
- If $S(n) \geq \log n$ then wlog M halts
- worst case measure

Complexity Classes

$\operatorname{Dtime}(T(n))=$
$\{L \mid$ exists a deterministic $T(n)$ time-bounded TM accepting L \}

Dspace $(S(n))=$
$\{L \mid$ exists a deterministic $S(n)$ space-bounded TM accepting $L\}$
E.g., Dtime (n), Dtime $\left(n^{2}\right)$, Dtime $\left(n^{3.7}\right)$, Dtime $\left(2^{n}\right)$, Dspace(log $n)$, Dspace(n),..

Linear Speedup Theorems

"Why constants don't matter": justifies O()

If $T(n)>$ linear*, then for every constant $\mathrm{c}>0$, $\operatorname{Dtime}(T(n))=\operatorname{Dtime}(c T(n))$

For every constant c > 0,
$\operatorname{Dspace}(S(n))=\operatorname{Dspace}(c S(n))$
(Proof idea: to compress by factor of 100 , use symbols that jam 100 symbols into 1 . For time speedup, more complicated.)

* $\mathrm{T}(\mathrm{n}) / \mathrm{n} \rightarrow \infty$

Tape Reduction

- If L is accepted by a $S(n)$ space-bdd k-tape TM, then L is also by a $S(n)$ space-bdd 1-tape TM.

Idea: M^{\prime} simulates M on 1 tape using k tracks

- If L is accepted by a $T(n)$ time-bdd k-tape TM, then L is also accepted by:
- A $(T(n))^{2}$ time-bdd 1-tape TM [proved earlier]
- A $T(n) \log T(n)$ time-bdd 2 -tape TM [very clever]

Time \& Space Hierarchies

With more time or space, we can compute more

If $\inf _{n \rightarrow \infty} S_{1}(n) / S_{2}(n)=0$ (e.g., $\left.S_{1}=o\left(S_{2}\right)\right)$
Then $\operatorname{Dspace}\left(\mathrm{S}_{1}(\mathrm{n})\right) \subset \operatorname{Dspace}\left(\mathrm{S}_{2}(\mathrm{n})\right)$

If inf $n \rightarrow \infty T_{1}(n) \log T_{1}(n) / T_{2}(n)=0$
Then $\operatorname{Dtime}\left(T_{1}(n)\right) \subset \operatorname{Dtime}\left(T_{2}(n)\right)$
also requires that $\mathrm{S}_{1}, \mathrm{~S}_{2}$, and T_{2} are "constructible"

Time \& Space Hierarchies

TIME

SPACE

Relationships between Time \& Space

- $\operatorname{Dtime}(f(n)) \subseteq \operatorname{Dspace}(f(n))$

You can only use as much space as you have time

- Dspace $(f(n)) \subseteq \operatorname{Dtime}\left(c^{f(n)}\right) \quad$ Equiviententy, 2 2O(f(n)
[if f is constructible and $f(n) \geq \log n$]

If you only have $f(n)$ space, the number of IDs is bounded by $c^{f(n)}$ before you start looping, so may as well halt. [exercise: what is c ?]

Goal: define "efficient" computation

$P=U$ Dtime $\left(n^{k}\right)$ $k \geq 0$

"Deterministic Polynomial Time"
Union over all polynomials p of Dtime $(p(n))$)

Worst-case

Advantages

- easy to analyze
- gives guarantee
- don't have to decide what "typical" inputs are

Disadvantages

- bizarre inputs created by bored mathematicians proving lower bounds can force algorithms to take longer than any input you're ever liable to see

Reasons why P is a bad def

- Worst case
- Asymptotic
- Ignores constants: $10^{100} n$ versus $10^{-100} 2^{n}$

Reasons why P is a good def

- Model invariance (RAM, TM, Cray, ...)
- Invariant to input encoding
- poly(poly(n)) = poly(n), so "efficient" composes
- Typical algs found are O($n^{\text {small-constant })}$
- Moderate growth rate of polys vs. exps...

Understatement: Exponentials are Big

1,000,000,000,000,000 operations per second

n	n^2	n^3	n^5	2^n	$n!$
10	1E-13	1E-12	1E-10	$1.024 \mathrm{E}-12$	
20	4E-13	8E-12	3.2E-09	$1.04858 \mathrm{E}-09$	
30	9E-13	2.7E-11	2.43E-08	$1.07374 \mathrm{E}-06$	
40	1.6E-12	6.4E-11	$1.024 \mathrm{E}-07$	0.001099512	
50	2.5E-12	$1.25 \mathrm{E}-10$	$3.125 \mathrm{E}-07$	1.125899907	
60	$3.6 \mathrm{E}-12$	$2.16 \mathrm{E}-10$	$7.776 \mathrm{E}-07$		
70	4.9E-12	3.43E-10	1.6807E-06		
80	6.4E-12	5.12E-10	3.2768E-06		
90	8.1E-12	7.29E-10	$5.9049 \mathrm{E}-06$		
100	1E-11	1E-09	0.00001		

Death of Sun: 5 GigaYears

Understatement: Exponentials are Big

1,000,000,000,000,000 operations per second

n	n^2	n^3	n^5	2^n	n!
10	1E-13	1E-12	1E-10	$1.024 \mathrm{E}-12$	$3.6288 \mathrm{E}-09$
20	4E-13	8E-12	3.2E-09	$1.04858 \mathrm{E}-09$	2432.902008
30	9E-13	2.7E-11	$2.43 \mathrm{E}-08$	$1.07374 \mathrm{E}-06$	8 GigaYears
40	$1.6 \mathrm{E}-12$	$6.4 \mathrm{E}-11$	$1.024 \mathrm{E}-07$	0.001099512	2.5E+25 Years
50	2.5E-12	$1.25 \mathrm{E}-10$	$3.125 \mathrm{E}-07$	1.125899907	silly
60	3.6E-12	$2.16 \mathrm{E}-10$	7.776E-07	19 min	silly
70	$4.9 \mathrm{E}-12$	$3.43 \mathrm{E}-10$	$1.6807 \mathrm{E}-06$	13 days	silly
80	6.4E-12	$5.12 \mathrm{E}-10$	3.2768E-06	38 years	silly
90	8.1E-12	7.29E-10	$5.9049 \mathrm{E}-06$	39K years	silly
100	1E-11	1E-09	0.00001	40M years	silly

Death of Sun: 5 GigaYears

