Basics of Complexity

"Complexity" = resources

- time
- space
- ink
- gates
- energy

Complexity is a function

- Complexity = f (input size)
- Value depends on:
 - problem encoding
 - adj. list vs. adj matrix
 - model of computation
 - Cray vs TM ~O(n³) difference

TM time complexity

Model: *k*-tape deterministic TM (for any *k*)

DEF: M is T(n) time bounded iff for every n, for every input w of size n, M(w) halts within T(n) transitions.

- *T*(*n*) means max {*n*+1, *T*(*n*)}

(so every TM spends at least linear time).

- worst case time measure
- *L* recursive \rightarrow for some function *T*, *L* is accepted by a *T*(*n*) time bounded TM.

TM space complexity

Model: "Offline" *k*-tape TM. read-only input tape *k* read/write work tapes initially blank

DEF: M is S(n) space bounded iff for every n, for every input w of size n, M(w) halts having scanned at most S(n) work tape cells.

- Can use less than linear space
- If $S(n) \ge \log n$ then wlog M halts
- worst case measure

Complexity Classes

Dtime(T(n)) =

{L | exists a deterministic T(n) time-bounded TM accepting L}

Dspace(S(n)) =

{L | exists a deterministic S(n) space-bounded TM accepting L}

E.g., Dtime(n), Dtime(n^2), Dtime($n^{3.7}$), Dtime(2^n), Dspace(log n), Dspace(n), ...

Linear Speedup Theorems

"Why constants don't matter": justifies O()

If T(n) > linear*, then for every constant c > 0, Dtime(T(n)) = Dtime(cT(n))

For *every* constant c > 0, Dspace(S(n)) = Dspace(cS(n))

(Proof idea: to compress by factor of 100, use symbols that jam 100 symbols into 1. For time speedup, more complicated.)

^{*} T(n)/n $\rightarrow \infty$

Tape Reduction

- If L is accepted by a S(n) space-bdd k-tape TM, then L is also by a S(n) space-bdd 1-tape TM.
 Idea: M' simulates M on 1 tape using k tracks
- If L is accepted by a T(n) time-bdd k-tape TM, then L is also accepted by:
 - A $(T(n))^2$ time-bdd 1-tape TM [proved earlier]
 - A T(n) log T(n) time-bdd 2-tape TM [very clever]

Time & Space Hierarchies

With more time or space, we can compute more

If $\inf_{n \to \infty} S_1(n)/S_2(n) = 0$ (e.g., $S_1 = o(S_2)$) Then Dspace($S_1(n)$) \subset Dspace($S_2(n)$)

If $\inf_{n \to \infty} T_1(n) \log T_1(n) / T_2(n) = 0$ Then Dtime $(T_1(n)) \subset \text{Dtime}(T_2(n))$

also requires that S_1 , S_2 , and T_2 are "constructible"

Relationships between Time & Space

- Dtime(f(n)) ⊆ Dspace(f(n))
 You can only use as much space as you have time
- $\mathsf{Dspace}(f(n)) \subseteq \mathsf{Dtime}(c^{f(n)}) \overset{\text{Different constant } c \text{ for each } L}{\mathsf{Equivalently, } 2^{O(f(n))}}$ [if f is constructible and $f(n) \ge \log n$]

If you only have f(n) space, the number of IDs is bounded by $c^{f(n)}$ before you start looping, so may as well halt. [exercise: what is c?] Goal: define "efficient" computation

$\mathsf{P} = \bigcup_{k \ge 0} \mathsf{Dtime}(n^k)$

"Deterministic Polynomial Time"

Union over all polynomials p of Dtime(p(n)))

Worst-case

Advantages

- easy to analyze
- gives guarantee
- don't have to decide what "typical" inputs are

Disadvantages

 bizarre inputs created by bored mathematicians proving lower bounds can force algorithms to take longer than any input you're ever liable to see

Reasons why P is a bad def

- Worst case
- Asymptotic
- Ignores constants: $10^{100}n$ versus $10^{-100}2^n$

Reasons why P is a good def

- Model invariance (RAM, TM, Cray, ...)
- Invariant to input encoding
- poly(poly(n)) = poly(n), so "efficient" composes
- Typical algs found are O(n^{small-constant})
- Moderate growth rate of polys vs. exps...

Understatement: Exponentials are Big

1,00					
n	n^2	n^3	n^5	2^n	n!
10	1E-13	1E-12	1E-10	1.024E-12	
20	4E-13	8E-12	3.2E-09	1.04858E-09	
30	9E-13	2.7E-11	2.43E-08	1.07374E-06	
40	1.6E-12	6.4E-11	1.024E-07	0.001099512	
50	2.5E-12	1.25E-10	3.125E-07	1.125899907	
60	3.6E-12	2.16E-10	7.776E-07		1
70	4.9E-12	3.43E-10	1.6807E-06		
80	6.4E-12	5.12E-10	3.2768E-06		
90	8.1E-12	7.29E-10	5.9049E-06	,	
100	1E-11	1E-09	0.00001		

Death of Sun: 5 GigaYears

Understatement: Exponentials are Big

1,00					
n	n^2	n^3	n^5	2^n	n!
10	1E-13	1E-12	1E-10	1.024E-12	3.6288E-09
20	4E-13	8E-12	3.2E-09	1.04858E-09	2432.902008
30	9E-13	2.7E-11	2.43E-08	1.07374E-06	8 GigaYears
40	1.6E-12	6.4E-11	1.024E-07	0.001099512	2.5E+25 Years
50	2.5E-12	1.25E-10	3.125E-07	1.125899907	silly
60	3.6E-12	2.16E-10	7.776E-07	19 min	silly
70	4.9E-12	3.43E-10	1.6807E-06	13 days	silly
80	6.4E-12	5.12E-10	3.2768E-06	38 years	silly
90	8.1E-12	7.29E-10	5.9049E-06	39K years	silly
100	1E-11	1E-09	0.00001	40M years	silly

Death of Sun: 5 GigaYears