Undecidability and Rice's Theorem

Lecture 25, April 27
CS 374, Spring 2017

Recap: Universal TM U

We saw a TM U such that

$$
L_{u}=L(U)=\{<M>\# w \mid M \text { accepts } w\}
$$

Thus, U is a stored-program computer.
It reads a program <M> and executes it on data w
L_{u} is r.e.

Recap: Universal TM U

$$
L_{u}=\{\langle M\rangle \# w \mid M \text { accepts } w\} \text { is r.e. }
$$

We proved the following:
Theorem: L_{u} is undecidable (i.e, not recursive)

No "algorithm" for L_{u}

Polytime Reductions

$X \leq_{p} Y$ " X reduces to Y in polytime"

X-solver (polytime)

If Y can be decided in poly time, then X can be decided in poly time If X can't be decided in poly time, then Y can't be decided in poly time

Polytime Reductions

$X \leq Y$ " X reduces to Y in polytime"

X-solver f(polytime)

If Y can be decided inpolytime, then X can be decided in polytime If X can't be decided inpoly time, then Y can't be decided in poly time

Reduction

$X \leq Y$ " X reduces to Y "

If Y can be decided, then X can be decided.
If X can't be decided, then Y can't be decided

Using Reductions

- Once we have some seed problems such as L_{d} and L_{u} we can use reductions to prove that more problems are undecidable

Halting Problem

- Does given M halt when run on blank input?
- $L_{\text {halt }}=\{\langle M\rangle \mid M$ halts when run on blank input $\}$
- Show $L_{\text {halt }}$ is undecidable by showing $L_{u} \leq L_{\text {halt }}$

What are input and output of the reduction?

A different version of HALT

$L_{\text {halt }}=\{\langle M\rangle \# w \mid M$ halts on $w\}$

Easier to show that this version of $L_{\text {halt }}$ is undecidable by showing $L_{u} \leq L_{\text {halt }}$
Why?

$L_{u} \leq L_{\text {halt }}$

L_{u}-decider
<M>\# w

Need: M^{\prime} halts on blank input iff $M(w)$ accepts

```
TM M'
    const M
    const w
run }M(w)\mathrm{ and halt if it accepts
```

The REDUCTION doesn't run M on w. It produces code for M^{\prime} !

Example

- Suppose we have the code for a program isprime() and we want to check if it accepts the number 13
- The reduction creates new program to give to decider for $L_{\text {halt }}$: note that the reduction only creates the code, does not run any program itself.

```
|main() { (isprime(13)) then 
```


$L_{u} \leq L_{\text {halt }}$

L_{u}-decider

Need: M^{\prime} halts on blank input iff $M(w)$ accepts

```
TM \(M^{\prime}\)
    const \(M\)
    const w
run \(M(w)\) and halt if it accepts
```

Correctness: L_{u}-decider say "yes" iff M^{\prime} halts on blank input iff $M(w)$ accepts
iff $<M>\# w$ is in L_{u}

More reductions about languages

- We'll show other languages involving program behavior are undecidable:
- $L_{374}=\left\{<M>\mid L(M)=\left\{0^{374}\right\}\right\}$
- $L_{\neq \varnothing}=\{<M>\mid L(M)$ is nonempty $\}$
- $L_{\text {pal }}=\{<M>\mid L(M)=$ palindromes $\}$
- many many others

$$
L_{374}=\left\{<M>\mid L(M)=\left\{0^{374}\right\}\right\} \text { is undecidable }
$$

- Given a TM M, telling whether it accepts only the string 0^{374} is not possible
- Proved by showing $L_{u} \leq L_{374}$

		M^{\prime} : constants: M, W
	REDUCTION: BUILD M ${ }^{\text {instance oft }}{ }_{374}$	
		On input x,
What is $L\left(M^{\prime}\right)$?		0. if $x \neq 0{ }^{374}$ 1. if $x=0{ }^{374}$
- If $M(w)$ acc	epts, $L\left(M^{\prime}\right)=\left\{0^{374}\right\}$	run
$M(w)$ d	$n^{\prime} \mathrm{L}\left(M^{\prime}\right)=\varnothing$	accept x iff $M(w)$

Q: How does the reduction know whether or not $M(w)$ accepts ? A: It doesn't have to. It just builds (code for) M^{\prime}.

If there is a decider M_{374} to tell if a TM accepts the language $\left\{0^{374}\right\} \ldots$

Since L_{u} is not decidable, M_{374} doesn't exist, and L_{374} is undecidable

Example

- Suppose we have the code for a program isprime() and we want to check if it accepts the number 13
- The reduction creates new program to give to decider for L_{374} : note that the reduction only creates the code, does not run any program itself.

main() $\{$
read input x
if $\left(x \neq 0^{374}\right)$ reject
If (isprime(13)) then
accept
$\}$
boolean isprime(int i) $\{$
\cdots

$$
L_{374}=\left\{\langle M\rangle \mid L(M)=\left\{0^{374}\right\}\right\} \text { is undecidable }
$$

- What about $L_{\text {accepts-374 }}=\left\{\langle M\rangle \mid M\right.$ accepts $\left.0^{374}\right\}$
- Is this easier?
- in fact, yes, since L_{374} isn't even ree., but $L_{\text {accepets-374 }}$ is
- but no, $L_{\text {accepts-374 }}$ is not decidable either
- The same reduction works:
- If $M(w)$ accepts, $L\left(M^{\prime}\right)=\left\{0^{374}\right\}$, so M^{\prime} accepts 0^{374}
- If $M(w)$ doesn't, $L\left(M^{\prime}\right)=\emptyset$, so M^{\prime} doesn't accept 0^{374}
- More generally, telling whether or not a machine accepts any fixed string is undecidable

$L_{\neq \varnothing}=\{<M>\mid L(M)$ is nonempty $\}$ is undecidable

- Given a TM M, telling whether it accepts any string is undecidable
- Proved by showing $L_{u} \leq L_{\neq \varnothing}$

<M> \# w	REDUCTION: BUILD M $\left.{ }^{\prime} \quad<M^{\prime}\right\rangle=$			M^{\prime} : constants: M, w On input x ,
$\xrightarrow[\text { instance of } L_{u}]{\text { <IVI> \# W }}$	REDUCTION:	ILD M ${ }^{\prime}$	$\xrightarrow[\text { instance of } L_{\neq \varnothing}]{ }$	
We want M^{\prime} to satisfy:			x	Run $M(w)$
- If $M(w)$ acc	ots, $L\left(M^{\prime}\right)$	$\neq \varnothing$		Accept x if $M(w)$ accepts
- If $M(w)$ do	$n^{\prime} t L\left(M^{\prime}\right)$	$=\varnothing$		

If $M(w)$ accepts, $L\left(M^{\prime}\right)=\Sigma^{*}$ hence $\neq \varnothing$
If $M(w)$ doesn't, $L\left(M^{\prime}\right)=\varnothing$

If there is a decider $\mathrm{M}_{\neq \varnothing}$ to tell if a TM accepts a nonempty language...

Since L_{u} is not decidable, $M_{\neq \varnothing}$ doesn't exist, and $L_{\neq \varnothing}$ is undecidable

$L_{p a l}=\{\langle M\rangle \mid L(M)=$ palindromes $\}$ is undecidable

- Given a TM M, telling whether it accepts the set of palindromes is undecidable
- Proved by showing $L_{u} \leq L_{p a l}$

If there is a decider $M_{p a l}$ to tell if a $T M$ accepts the set of palindromes

Since L_{u} is not decidable, $M_{p a l}$ doesn't exist, and $L_{p a l}$ is undecidable

Lots of undecidable problems about languages accepted by programs

- Given M, is $L(M)=$ \{palindromes $\}$?
- Given M, is $L(M) \neq \varnothing$?
- Given M, is $L(M)=\left\{0^{374}\right\}$
- Given M, does $L\left(\Lambda^{\prime}\right)$
- Given M, is '
- Given
contain any word? $\mathcal{L}(M)$ meet these formal specs?
- G \quad, does $L(M)=\Sigma^{*}$?

Rice's Theorem

- Q: What can we decide about the languages accepted by programs?

$$
\text { A: } \underset{\substack{\text { except trivival" things }}}{\text { NOTHING! }}
$$

Properties of r.e. languages

- A Property of r.e. languages is a predicate P of r.e. languages.

$$
\text { i.e., } P:\{L \mid L \text { is r.e. }\} \rightarrow\{\text { true, false }\}
$$

Important: we are only interested in r.e languages

- Examples:
- $P(L)=$ " L contains $0^{374 "}$
- $P(L)=$ " L contains at least 5 strings"
- $P(L)=$ " L is empty"
- $P(L)=" L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ "

Properties of r.e. languages

- A Property of r.e. languages is a predicate P of r.e. languages.

$$
\text { i.e., } P:\{L \mid L \text { is r.e. }\} \rightarrow\{\text { true, false }\}
$$

$L=L(M)$ for some $T M$ iff L is r.e by definition.

- We will thus think of a Property of r.e. languages as a set $\{<M>\mid L(M)$ satisfies predicate $P\}$
- Note that each property P is thus a set of strings $L(P)=\{<M>\mid L(M)$ satisfies predicate $P\}$
- Question: For which P is $L(P)$ decidable?

Trivial Properties

- A property is trivial if either all r.e. languages satisfy it, or no r.e. languages satisfy it.
- $\{<M>\mid L(M)$ is r.e $\} ..$. why is this "trivial" ?
- EVERY language accepted by an M is r.e. by def'n
- $\{\langle M>| L(M)$ is not $r . e\} . .$. why is this "trivial" ?
- $\{<M>\mid L(M)=\varnothing$ or $L(M) \neq \emptyset\}$.... why "trivial"?
- Clearly, trivial properties are decidable
- Because if P is trivial then $L(P)=\varnothing$ or $L(P)=\Sigma^{*}$

Rice's Theorem

Every nontrivial property of r.e. languages is undecidable

So, there is virtually nothing we can decide about behavior (language accepted) by programs

Example: auto-graders don't exist (if submissions are allowed to run an arbitrary (but finite) amount of time).

Proof

- Let P be a non-trivial property
- Let $L(P)=\{<M>\mid L(M)$ satisfies predicate $P\}$
- Show $L(P)$ is undecidable
- Assume \varnothing does not satisfy P
- Assume $L\left(M_{1}\right)$ satisfies P for some TM M_{1}

There must be at least one such TM (why?)

If there is a decider M_{p} to tell if a $T M$ accepts a language satisfying P...

What about assumption

- We assumed \varnothing does not satisfy P
- What if \varnothing does satisfy P ?
- Then consider
$L\left(P^{\prime}\right)=\{\langle M>| L(M)$ doesn't satisfy predicate $P\}$
- Then \varnothing isn't in $L\left(P^{\prime}\right)$
- Show $L\left(P^{\prime}\right)$ is undecidable
- So $L(P)$ isn't either (by closure under complement)

Properties of r.e Languages are Not properties of programs/TMs

- P is defined on languages, not the machines which might accept them.
- $\{<M>\mid M$ at some point moves its head left $\}$ is a property of the machine behavior, not the language accepted.
- \{<A.py> | program A has 374 lines of code\}
- \{<A.py> | A accepts "Hello World"\} this really is a predicate on $L(A)$

Properties about TMs

- sometimes decidable:
$-\{\langle M>| M$ has 374 states $\}$
$-\{\langle M>| M$ uses ≤ 374 tape cells on blank input $\}$
- $374 \times|\Gamma|^{32} \times\left|Q_{M}\right|$
$-\{\langle M>| M$ never moves head to left $\}$
- sometimes undecidable
$-\{\langle M>| M$ halts on blank input $\}$
$-\{<M>\mid M$ on input " 0110 ", eventually writes " 2 " $\}$

Today

- Quick recap - halting \& undecidability
- Undecidability via reductions
- Rice's theorem
- ICES

Final Thoughts

Theory of Computation and Algorithms are fundamental to Computer Science

Of immense pragmatic importance Of great interest to mathematics Of great interest to natural sciences (physics, biology, chemistry)
Of great interest to social sciences too!

Other Theory Courses

- 473 (Theory 2) - every semester
- 475 (Fall'17)
- Randomized algorithms (Spring'18?)
- Approximation algorithms (Spring'18?)
- Computational Complexity (Spring'18?)
- Special topics: Algorithmic Game Theory, Data structures (Fall'17?), Computational Geometry, Algorithms for Big Data, Geometric Data Structures, Pseudorandomness (Fall'17?), Combinatorial Optimization, ...

Other "Theory ish" Courses

- Machine learning, statistical learning, graphical models, ...
- Logic and formal methods
- Graph theory, combinatorics, ...
- Coding theory, information theory, signal processing
- Computational biology

Final Thoughts

Grades are important but only in short term

Use your algorithmic/theory/analytical skills to differentiate yourself from other IT professionals

On Learning

Without seeking, truth cannot be known at all. It can neither be declared from pulpits, nor set down in articles nor in any wise be prepared and sold in packages ready for use. Truth must be ground for every man by himself out of its husk, with such help as he can get, but not without stern labour of his own.
--John Ruskin

Thanks!

