CS 374: Algorithms & Models of Computation, Spring 2017

Hamiltonian Cycle, 3-Color, Circuit-SAT

Lecture 24 April 25, 2017

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$
- L is NP-Hard if for every L' in NP, $L' \leq_P L$.

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$
- L is NP-Hard if for every L' in NP, $L' \leq_P L$.

Theorem (Cook-Levin) SAT *is* NP-Complete.

Pictorial View

P and NP

Possible scenarios:

- $\bullet P = NP.$
- $P \neq NP$

P and NP

Possible scenarios:

- $\bullet P = NP.$
- $\bigcirc \mathsf{P} \neq \mathsf{NP}$

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

P and NP

Possible scenarios:

- $\bullet P = NP.$
- $\bigcirc \mathsf{P} \neq \mathsf{NP}$

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

Theorem (Ladner)

If $P \neq NP$ then there is a problem/language $X \in NP \setminus P$ such that X is not NP-Complete.

Today

NP-Completeness of three problems:

- Hamiltonian Cycle
- 3-Color
- Circuit SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor

Part I

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once

Is the following graph Hamiltonianan?

(A) Yes.(B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise
- Hardness: We will show
 3-SAT ≤_P Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

Reduction: First Ideas

- Viewing SAT: Assign values to *n* variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

- Traverse path *i* from left to right iff *x_i* is set to true
- Each path has 3(m + 1) nodes where m is number of clauses in φ; nodes numbered from left to right (1 to 3m + 3)

• Add vertex c_i for clause C_i . c_i has edge from vertex 3j and to vertex 3i + 1 on path *i* if x_i appears in clause C_i , and has edge from vertex 3j + 1 and to vertex 3j if $\neg x_i$ appears in C_i .

Correctness Proof

Proposition

arphi has a satisfying assignment iff G_{arphi} has a Hamiltonian cycle.

Proof.

- \Rightarrow Let a be the satisfying assignment for $\varphi.$ Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path *i* from left to right
 - If $a(x_i) = 0$ then traverse path *i* from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path *i* is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example

Hamiltonian Cycle \implies Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does *G* have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem

Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

• Replace each vertex v by 3 vertices: vin, v, and vout

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: vin, v, and vout
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)
Input Given a graph G = (V, E) with *n* vertices

Goal Does G have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex in *G* exactly once

Input Given a graph G = (V, E) with *n* vertices

Goal Does G have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex in *G* exactly once

Theorem

Directed Hamiltonian Path and **Undirected Hamiltonian Path** are NP-Complete.

Part II

NP-Completeness of Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question:** Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite!

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR ≤_P k-Register Allocation, for any k ≥ 3

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph *k*-Coloring problem

Create graph **G**

- a node v; for each class i
- an edge between v_i and v_j if classes i and j conflict

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph *k*-Coloring problem

Create graph **G**

- a node v; for each class i
- an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to \mathbf{k} -coloring by creating intereference/conflict graph on towers.

3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

(A) Yes.(B) No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

(A) Yes.(B) No.

3-Coloring is NP-Complete

• 3-Coloring is in NP.

- Non-deterministically guess a 3-coloring for each node
- Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Start with **3SAT** formula (i.e., **3**CNF formula) φ with *n* variables x_1, \ldots, x_n and *m* clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

• need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- If graph is 3-colored, either v_i or v
 i gets the same color as True. Interpret this as a truth assignment to v_i

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- If graph is 3-colored, either v_i or v

 i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

Clause Satisfiability Gadget

For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR

OR-gadget-graph:

OR-Gadget Graph

Property: if *a*, *b*, *c* are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction

Claim

No legal **3**-coloring of above graph (with coloring of nodes **T**, **F**, **B** fixed) in which **a**, **b**, **c** are colored False. If any of **a**, **b**, **c** are colored True then there is a legal **3**-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

arphi is satisfiable implies G_{arphi} is 3-colorable

• if x_i is assigned True, color v_i True and \bar{v}_i False

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

arphi is satisfiable implies G_{arphi} is 3-colorable

- if x_i is assigned True, color v_i True and \bar{v}_i False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- $\pmb{G}_{\pmb{arphi}}$ is 3-colorable implies \pmb{arphi} is satisfiable
 - if *v_i* is colored True then set *x_i* to be True, this is a legal truth assignment

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause C_j = (a ∨ b ∨ c) at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{φ} is 3-colorable implies φ is satisfiable
 - if *v_i* is colored True then set *x_i* to be True, this is a legal truth assignment
 - consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!
Graph generated in reduction... ... from 3SAT to 3COLOR

Part III

Circuit SAT

Circuits

Definition

A circuit is a directed *acyclic* graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- Severy other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed *acyclic* graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- Severy other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed *acyclic* graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- Severy other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Claim

CSAT is in NP.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem SAT $<_P$ 3SAT $<_P$ CSAT. Theorem $CSAT <_{P} SAT <_{P} 3SAT$.

Converting a CNF formula into a Circuit

Given 3CNF formulat φ with *n* variables and *m* clauses, create a Circuit *C*.

- Inputs to C are the n boolean variables x_1, x_2, \ldots, x_n
- Use NOT gate to generate literal $\neg x_i$ for each variable x_i
- For each clause (ℓ₁ ∨ ℓ₂ ∨ ℓ₃) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

Converting a circuit into a $\ensuremath{\mathrm{CNF}}$ formula Label the nodes

Converting a circuit into a $\ensuremath{\mathrm{CNF}}$ formula Introduce a variable for each node

Converting a circuit into a CNF formula Write a sub-formula for each variable that is true if the var is computed correctly.

$$x_{k} \quad (\text{Demand a sat' assignment!})$$

$$x_{k} = x_{i} \land x_{j}$$

$$x_{j} = x_{g} \land x_{h}$$

$$x_{i} = \neg x_{f}$$

$$x_{h} = x_{d} \lor x_{e}$$

$$x_{g} = x_{b} \lor x_{c}$$

$$x_{f} = x_{a} \land x_{b}$$

$$x_{d} = 0$$

$$x_{a} = 1$$

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula Convert each sub-formula to an equivalent CNF formula

Converting a circuit into a CNF formula Take the conjunction of all the CNF sub-formulas

$$x_{k} \land (\neg x_{k} \lor x_{i}) \land (\neg x_{k} \lor x_{j}) \\ \land (x_{k} \lor \neg x_{i} \lor \neg x_{j}) \land (\neg x_{j} \lor x_{g}) \\ \land (\neg x_{j} \lor x_{h}) \land (x_{j} \lor \neg x_{g} \lor \neg x_{h}) \\ \land (x_{i} \lor x_{f}) \land (\neg x_{i} \lor \gamma x_{f}) \\ \land (x_{h} \lor \neg x_{d}) \land (x_{h} \lor \neg x_{e}) \\ \land (\neg x_{h} \lor x_{d} \lor x_{e}) \land (x_{g} \lor \neg x_{b}) \\ \land (x_{g} \lor \neg x_{c}) \land (\neg x_{g} \lor x_{b} \lor x_{c}) \\ \land (\neg x_{f} \lor x_{a}) \land (\neg x_{f} \lor x_{b}) \\ \land (x_{f} \lor \neg x_{a} \lor \neg x_{b}) \land (\neg x_{d}) \land x_{a}$$

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: **CSAT** \leq_{P} **SAT**

- For each gate (vertex) v in the circuit, create a variable x_v
- Case \neg : v is labeled \neg and has one incoming edge from u (so $x_v = \neg x_u$). In SAT formula generate, add clauses $(x_u \lor x_v)$, $(\neg x_u \lor \neg x_v)$. Observe that

$$x_v = \neg x_u$$
 is true \iff

$$egin{aligned} (x_u ee x_v) \ (
eg x_u ee
eg x_v) \end{aligned} ext{ both true} \ \end{aligned}$$

Reduction: $CSAT \leq_P SAT$

• Case \lor : So $x_v = x_u \lor x_w$. In SAT formula generated, add clauses $(x_v \lor \neg x_u)$, $(x_v \lor \neg x_w)$, and $(\neg x_v \lor x_u \lor x_w)$. Again, observe that

$$\begin{pmatrix} x_{v} = x_{u} \lor x_{w} \end{pmatrix} \text{ is true } \iff \begin{pmatrix} (x_{v} \lor \neg x_{u}), \\ (x_{v} \lor \neg x_{w}), \\ (\neg x_{v} \lor x_{u} \lor x_{w}) \end{pmatrix} \text{ all true.}$$

Reduction: $CSAT \leq_P SAT$

• Case \land : So $x_v = x_u \land x_w$. In SAT formula generated, add clauses $(\neg x_v \lor x_u)$, $(\neg x_v \lor x_w)$, and $(x_v \lor \neg x_u \lor \neg x_w)$. Again observe that

$$\begin{aligned} x_v &= x_u \wedge x_w \text{ is true } \iff \begin{array}{ll} (\neg x_v \lor x_u), \\ (\neg x_v \lor x_w), \\ (x_v \lor \neg x_u \lor \neg x_w) \end{array} \text{ all true.} \end{aligned}$$

Reduction: $CSAT \leq_P SAT$

- If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v . If $x_v = 0$ add clause $\neg x_v$
- 2 Add the clause x_v where v is the variable for the output gate

Need to show circuit C is satisfiable iff φ_C is satisfiable

- \Rightarrow Consider a satisfying assignment *a* for *C*
 - Find values of all gates in C under a
 - **2** Give value of gate v to variable x_v ; call this assignment a'
 - **3** a' satisfies φ_{C} (exercise)
- $\Leftarrow \text{ Consider a satisfying assignment } a \text{ for } \varphi_{\textit{C}}$
 - Let a' be the restriction of a to only the input variables
 - **2** Value of gate v under a' is the same as value of x_v in a
 - 3 Thus, a' satisfies C

List of NP-Complete Problems to Remember

Problems

- SAT
- 3SAT
- O CircuitSAT
- Independent Set
- Olique
- Overtex Cover
- Hamilton Cycle and Hamilton Path in both directed and undirected graphs
- 3Color and Color