CS 374: Algorithms & Models of Computation, Spring 2017

NP and NP Completeness

Lecture 23 April 20, 2017

Part I

NP

P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.
- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- \bullet $P \subset NP$
- Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether P = NP.

Problems with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability

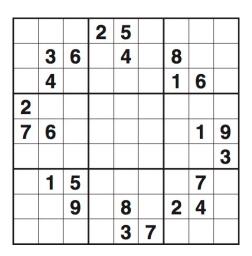
For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **1** SAT formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k: a subset S of vertices.
- 4 Homework

5

Sudoku



Given $n \times n$ sudoku puzzle, does it have a solution?

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a **certifier** for problem X if the following two conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes"
- If $s \not\in X$, C(s,t) = "no" for every t.

The string t is called a certificate or proof for s.

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier C is an **efficient certifier** for problem X if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that C(s,t) = "yes" and $|t| \le p(|s|)$.
- If $s \not\in X$, C(s,t) = "no" for every t.
- $C(\cdot, \cdot)$ runs in polynomial time.

8

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subset V$.
 - **Q** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Example: Vertex Cover

- **1** Problem: Does G have a vertex cover of size $\leq k$?
 - Certificate: $S \subseteq V$.
 - **Q** Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

Example: **SAT**

- **1** Problem: Does formula φ have a satisfying truth assignment?
 - **1** Certificate: Assignment a of 0/1 values to each variable.
 - Certifier: Check each clause under a and say "yes" if all clauses are true.

Example: Composites

Problem: Composite

Instance: A number s.

Question: Is the number **s** a composite?

Problem: Composite.

• Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.

Certifier: Check that t divides s.

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA *M*.

Question: Is $L(M) = \Sigma^*$, that is, does M accept all

strings?

Problem: NFA Universality.

Certificate: A DFA M' equivalent to M

2 Certifier: Check that $L(M') = \Sigma^*$

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA *M*.

Question: Is $L(M) = \Sigma^*$, that is, does M accept all

strings?

Problem: NFA Universality.

Certificate: A DFA M' equivalent to M

2 Certifier: Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in *NP*.

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_i, \alpha_i, \ldots, \alpha_{i_k} = \beta_i, \beta_i, \ldots, \beta_{i_k}$

Problem: PCP

• Certificate: A sequence of indices i_1, i_2, \ldots, i_k

② Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Example: A String Problem

Problem: PCP

```
Instance: Two sets of binary strings \alpha_1, \ldots, \alpha_n and \beta_1, \ldots, \beta_n
Question: Are there indices i_1, i_2, \ldots, i_k such that \alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_k} = \beta_{i_1} \beta_{i_2} \ldots \beta_{i_k}
```

- Problem: PCP
 - Certificate: A sequence of indices i_1, i_2, \ldots, i_k
 - ② Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

Why is it called...

Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

- I: instance.
- 2 c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about C as an algorithm for the original problem, if:

- Given I, the algorithm guesses (non-deterministically, and who knows how) a certificate c.
- $oldsymbol{\circ}$ The algorithm now verifies the certificate $oldsymbol{c}$ for the instance $oldsymbol{I}$.
- NP can be equivalently described using Turing machines.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

P versus NP

Proposition

 $P \subseteq NP$.

18

P versus NP

Proposition

 $P \subseteq NP$.

For a problem in P no need for a certificate!

Proof.

Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier:

- Certifier C on input s, t, runs A(s) and returns the answer.
- C runs in polynomial time.
- \bullet If $s \in X$, then for every t, C(s, t) = "yes".
- If $s \not\in X$, then for every t, C(s,t) = "no".

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

19

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

NP versus EXP

Proposition

 $NP \subset EXP$.

Proof.

Let $X \in \mathbb{NP}$ with certifier C. Need to design an exponential time algorithm for X.

- For every t, with $|t| \le p(|s|)$ run C(s, t); answer "yes" if any one of these calls returns "yes".
- The above algorithm correctly solves X (exercise).
- 3 Algorithm runs in $O(q(|s| + |p(s)|)2^{p(|s|)})$, where q is the running time of C.

Examples

- **SAT**: try all possible truth assignment to variables.
- Independent Set: try all possible subsets of vertices.
- Vertex Cover: try all possible subsets of vertices.

Is NP efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Is **NP** efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

Spring 2017

Or: If pigs could fly then life would be sweet.

Many important optimization problems can be solved efficiently.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\overline{P} = \overline{NP}$ this implies that...

- (A) Vertex Cover can be solved in polynomial time.
- (B) P = EXP.
- (C) EXP \subseteq P.
- (D) All of the above.

P versus NP

Status

Relationship between **P** and **NP** remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving **P** versus **NP** is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Part II

NP-Completeness

26

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- We Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem X is said to be NP-Complete if

- \bullet $X \in NP$, and
- (Hardness) For any $Y \in NP$, $Y <_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose X can be solved in polynomial time
 - **1** Let $Y \in NP$. We know $Y \leq_P X$.
 - We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
 - **3** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
 - **3** Since $P \subset NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

Definition

A problem **X** is said to be **NP-Hard** if

1 (Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT *is* NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

- SAT is in NP.
- every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Question Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- ② Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

34

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- ② Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-5AT is NP-Complete

- 3-SAT is in NP
- SAT \leq_P 3-SAT as we saw

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- \circ SAT $<_P$ 3-SAT
- **3** 3-SAT \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- **1** Independent Set \leq_P Clique
- **⑤** 3-SAT \leq_P 3-Color
- **③** 3-SAT \leq_P Hamiltonian Cycle

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- \circ SAT \leq_P 3-SAT
- **3** 3-SAT \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- **1** Independent Set \leq_P Clique
- **5** 3-SAT \leq_P 3-Color
- **②** 3-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

Part III

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer **k**.

Question: Is there an independent set in G of size k?

$3SAT \leq_P Independent Set$

The reduction 3SAT \leq_P Independent Set

Input: Given a 3 CNF formula φ

Goal: Construct a graph $extbf{\emph{G}}_{arphi}$ and number $extbf{\emph{\emph{k}}}$ such that $extbf{\emph{\emph{G}}}_{arphi}$ has an

independent set of size k if and only if φ is satisfiable.

$3SAT \leq_P Independent Set$

The reduction 3SAT \leq_P Independent Set

Input: Given a 3CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an

independent set of size k if and only if φ is satisfiable.

 $G_{\!arphi}$ should be constructable in time polynomial in size of arphi

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_{P} **Independent Set**

Input: Given a 3 CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

 $extbf{\emph{G}}_{arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

There are two ways to think about **3SAT**

• Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true

There are two ways to think about **3SAT**

- ullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- ② Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

We will take the second view of **3SAT** to construct the reduction.

1 G_{φ} will have one vertex for each literal in a clause

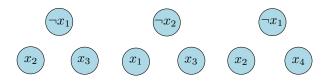


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- **1** G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

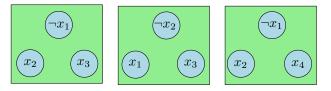
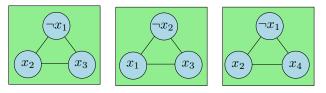


Figure: Graph for

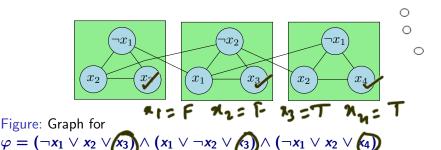
$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- **1** G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true



$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- **1** G_{φ} will have one vertex for each literal in a clause
- Onnect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict



- **1** G_{φ} will have one vertex for each literal in a clause
- Onnect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

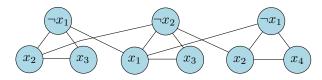


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Rightarrow Let a be the truth assignment satisfying arphi

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let a be the truth assignment satisfying arphi
 - Pick one of the vertices, corresponding to true literals under **a**, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \leftarrow Let **S** be an independent set of size **k**
 - S must contain exactly one vertex from each clause
 - S cannot contain vertices labeled by conflicting literals
 - Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause