CS 374: Algorithms \& Models of Computation, Spring 2017

Polynomial Time Reductions

Lecture 22
April 18, 2017

Part I

(Polynomial Time) Reductions

Reductions

A reduction from Problem X to Problem \boldsymbol{Y} means (informally) that if we have an algorithm for Problem \boldsymbol{Y}, we can use it to find an algorithm for Problem \boldsymbol{X}.

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem \boldsymbol{Y}, we can use it to find an algorithm for Problem \boldsymbol{X}.

Using Reductions

(1) We use reductions to find algorithms to solve problems.

Reductions

A reduction from Problem X to Problem \boldsymbol{Y} means (informally) that if we have an algorithm for Problem \boldsymbol{Y}, we can use it to find an algorithm for Problem \boldsymbol{X}.

Using Reductions

(1) We use reductions to find algorithms to solve problems.
(2) We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Reductions for decision problems/languages

For languages L_{X}, L_{Y}, a reduction from L_{X} to L_{Y} is:
(1) An algorithm ...
(2) Input: $w \in \boldsymbol{\Sigma}^{*}$
(3) Output: $w^{\prime} \in \boldsymbol{\Sigma}^{*}$
(Such that:

$$
w \in L_{Y} \Longleftrightarrow w^{\prime} \in L_{X}
$$

Reductions for decision problems/languages

For languages L_{X}, L_{Y}, a reduction from L_{X} to L_{Y} is:
(1) An algorithm ...
(2) Input: $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$
(3) Output: $w^{\prime} \in \boldsymbol{\Sigma}^{*}$
(Such that:

$$
w \in L_{Y} \Longleftrightarrow w^{\prime} \in L_{X}
$$

(Actually, this is only one type of reduction, but this is the one we'll use most often.) There are other kinds of reductions.

Reductions for decision problems/languages

For decision problems X, Y, a reduction from X to Y is:
(1) An algorithm ...
(2) Input: $\boldsymbol{I}_{\boldsymbol{X}}$, an instance of \boldsymbol{X}.
(3) Output: I_{Y} an instance of Y.
(1) Such that:
I_{Y} is YES instance of $Y \Longleftrightarrow I_{X}$ is YES instance of X

Using reductions to solve problems

(1) \mathcal{R} : Reduction $X \rightarrow Y$
(2) $\mathcal{A}_{\boldsymbol{Y}}$: algorithm for Y :

Using reductions to solve problems

(1) \mathcal{R} : Reduction $X \rightarrow Y$
(2) \mathcal{A}_{Y} : algorithm for Y :

- \Longrightarrow New algorithm for \boldsymbol{X} :

$$
\begin{aligned}
\mathcal{A}_{X}\left(I_{X}\right): & \\
& / / I_{X}: \text { instance of } X . \\
& I_{Y} \Leftarrow \mathcal{R}\left(\boldsymbol{I}_{X}\right) \\
& \text { return } \mathcal{A}_{Y}\left(\boldsymbol{I}_{Y}\right)
\end{aligned}
$$

Using reductions to solve problems

(1) \mathcal{R} : Reduction $X \rightarrow Y$
(2) \mathcal{A}_{Y} : algorithm for Y :

- \Longrightarrow New algorithm for \boldsymbol{X} :

$$
\begin{aligned}
\mathcal{A}_{X}\left(I_{X}\right): & \\
& / / I_{X}: \text { instance of } X . \\
& I_{Y} \Leftarrow \mathcal{R}\left(I_{X}\right) \\
& \text { return } \mathcal{A}_{Y}\left(I_{Y}\right)
\end{aligned}
$$

If \mathcal{R} and $\mathcal{A}_{\boldsymbol{Y}}$ polynomial-time $\Longrightarrow \mathcal{A}_{\boldsymbol{X}}$ polynomial-time.

Comparing Problems

(1) "Problem X is no harder to solve than Problem \boldsymbol{Y}^{\prime}.
(2) If Problem \boldsymbol{X} reduces to Problem \boldsymbol{Y} (we write $\boldsymbol{X} \leq \boldsymbol{Y}$), then X cannot be harder to solve than Y.
(3) $X \leq Y$:
(1) \boldsymbol{X} is no harder than \boldsymbol{Y}, or
(2) \boldsymbol{Y} is at least as hard as \boldsymbol{X}.

Part II

Examples of Reductions

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:
(1) independent set: no two vertices of V^{\prime} connected by an edge.

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:
(1) independent set: no two vertices of V^{\prime} connected by an edge.
(2) clique: every pair of vertices in V^{\prime} is connected by an edge of G .

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:
(1) independent set: no two vertices of V^{\prime} connected by an edge.
(2) clique: every pair of vertices in V^{\prime} is connected by an edge of G.

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:
(1) independent set: no two vertices of V^{\prime} connected by an edge.
(2) clique: every pair of vertices in V^{\prime} is connected by an edge of G.

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:
(1) independent set: no two vertices of V^{\prime} connected by an edge.
(2) clique: every pair of vertices in V^{\prime} is connected by an edge of G.

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer \boldsymbol{k}.
Question: Does G has an independent set of size $\geq \boldsymbol{k}$?

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer \boldsymbol{k}.
Question: Does G has an independent set of size $\geq \boldsymbol{k}$?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size $\geq k$?

Recall

For decision problems X, Y, a reduction from X to Y is:
(1) An algorithm ...
(2) that takes I_{X}, an instance of \boldsymbol{X} as input ...
(0) and returns I_{Y}, an instance of Y as output ...
(1) such that the solution (YES/NO) to I_{Y} is the same as the solution to $I_{\boldsymbol{X}}$.

Reducing Independent Set to Clique

An instance of Independent Set is a graph \boldsymbol{G} and an integer \boldsymbol{k}.

Reducing Independent Set to Clique

An instance of Independent Set is a graph \boldsymbol{G} and an integer \boldsymbol{k}.

Reducing Independent Set to Clique

An instance of Independent Set is a graph \boldsymbol{G} and an integer \boldsymbol{k}.
Reduction given $\langle\boldsymbol{G}, \boldsymbol{k}\rangle$ outputs $\langle\bar{G}, \boldsymbol{k}>$ where \bar{G} is the complement of G. \bar{G} has an edge (u, v) if and only if (u, v) is not an edge of \boldsymbol{G}.

Reducing Independent Set to Clique

An instance of Independent Set is a graph \boldsymbol{G} and an integer \boldsymbol{k}.
Reduction given $\langle\boldsymbol{G}, \boldsymbol{k}\rangle$ outputs $\langle\bar{G}, \boldsymbol{k}>$ where \bar{G} is the complement of G. \bar{G} has an edge (u, v) if and only if (u, v) is not an edge of \boldsymbol{G}.

Reducing Independent Set to Clique

An instance of Independent Set is a graph \boldsymbol{G} and an integer \boldsymbol{k}.
Reduction given $<\boldsymbol{G}, \boldsymbol{k}>$ outputs $<\overline{\boldsymbol{G}}, \boldsymbol{k}>$ where $\overline{\boldsymbol{G}}$ is the complement of G. \bar{G} has an edge (u, v) if and only if (u, v) is not an edge of \boldsymbol{G}.

Reducing Independent Set to Clique

An instance of Independent Set is a graph \boldsymbol{G} and an integer \boldsymbol{k}.
Reduction given $<\boldsymbol{G}, \boldsymbol{k}>$ outputs $<\overline{\boldsymbol{G}}, \boldsymbol{k}>$ where $\overline{\boldsymbol{G}}$ is the complement of G. \bar{G} has an edge (u, v) if and only if (u, v) is not an edge of G.

Correctness of reduction

Lemma

G has an independent set of size \boldsymbol{k} if and only if $\overline{\boldsymbol{G}}$ has a clique of size k.

Proof.

Need to prove two facts:
\boldsymbol{G} has independent set of size at least \boldsymbol{k} implies that $\overline{\boldsymbol{G}}$ has a clique of size at least k.
\bar{G} has a clique of size at least \boldsymbol{k} implies that \boldsymbol{G} has an independent set of size at least k.
Easy to see both from the fact that $S \subseteq \mathbf{V}$ is an independent set in G if and only if S is a clique in \bar{G}.

Independent Set and Clique

(1) Independent Set \leq Clique.

Independent Set and Clique

(1) Independent Set \leq Clique.

What does this mean?
(2) If have an algorithm for Clique, then we have an algorithm for Independent Set.

Independent Set and Clique

(1) Independent Set \leq Clique.

What does this mean?
(2) If have an algorithm for Clique, then we have an algorithm for Independent Set.
(3) Clique is at least as hard as Independent Set.

Independent Set and Clique

(1) Independent Set \leq Clique.

What does this mean?
(2) If have an algorithm for Clique, then we have an algorithm for Independent Set.
(3) Clique is at least as hard as Independent Set.
(4) Also... Clique \leq Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

Independent Set and Clique

Assume you can solve the Clique problem in $T(n)$ time. Then you can solve the Independent Set problem in
(A) $O(T(n))$ time.
(B) $O(n \log n+T(n))$ time.
(C) $O\left(n^{2} T\left(n^{2}\right)\right)$ time.
(D) $O\left(n^{4} T\left(n^{4}\right)\right)$ time.
(E) $O\left(n^{2}+T\left(n^{2}\right)\right)$ time.
(F) Does not matter - all these are polynomial if $T(n)$ is polynomial, which is good enough for our purposes.

DFA Universality

A DFA M is universal if it accepts every string. That is, $L(M)=\boldsymbol{\Sigma}^{*}$, the set of all strings.

DFA Universality

A DFA M is universal if it accepts every string. That is, $L(M)=\boldsymbol{\Sigma}^{*}$, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?

DFA Universality

A DFA M is universal if it accepts every string. That is, $L(M)=\boldsymbol{\Sigma}^{*}$, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?
How do we solve DFA Universality?

DFA Universality

A DFA M is universal if it accepts every string. That is, $L(M)=\boldsymbol{\Sigma}^{*}$, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?
How do we solve DFA Universality?
We check if M has any reachable non-final state.

NFA Universality

An NFA \boldsymbol{N} is said to be universal if it accepts every string. That is, $L(N)=\Sigma^{*}$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?
How do we solve NFA Universality?

NFA Universality

An NFA \boldsymbol{N} is said to be universal if it accepts every string. That is, $L(N)=\Sigma^{*}$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?
How do we solve NFA Universality?
Reduce it to DFA Universality?

NFA Universality

An NFA \boldsymbol{N} is said to be universal if it accepts every string. That is, $L(N)=\Sigma^{*}$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?
How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA \boldsymbol{N}, convert it to an equivalent DFA \mathbf{M}, and use the DFA Universality Algorithm.

NFA Universality

An NFA \boldsymbol{N} is said to be universal if it accepts every string. That is, $L(N)=\boldsymbol{\Sigma}^{*}$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?
How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not expect a polynomial-time algorithm.

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.
To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.
To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_{p} Y$), and a poly-time algorithm $\mathcal{A}_{\boldsymbol{Y}}$ for Y, we have a polynomial-time/efficient algorithm for \boldsymbol{X}.

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.
To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_{p} Y$), and a poly-time algorithm $\mathcal{A}_{\boldsymbol{Y}}$ for Y, we have a polynomial-time/efficient algorithm for \boldsymbol{X}.

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} that has the following properties:
(1) given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{\boldsymbol{X}}\right|$.
(3) Answer to $\boldsymbol{I}_{\boldsymbol{X}}$ YES iff answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES.

Proposition

If $X \leq_{P} Y$ then a polynomial time algorithm for \boldsymbol{Y} implies a polynomial time algorithm for \boldsymbol{X}.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions. Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq_{P} Y$. Then
(A) Y can be solved in polynomial time.
(B) Y can NOT be solved in polynomial time.
(C) If Y is hard then X is also hard.
(D) None of the above.
(E) All of the above.

Polynomial-time reductions and hardness

For decision problems X and Y, if $X \leq_{P} Y$, and Y has an efficient algorithm, \boldsymbol{X} has an efficient algorithm.

Polynomial-time reductions and hardness

For decision problems X and Y, if $X \leq_{P} Y$, and Y has an efficient algorithm, \boldsymbol{X} has an efficient algorithm.

If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?

Polynomial-time reductions and hardness

For decision problems X and Y, if $X \leq_{P} Y$, and Y has an efficient algorithm, \boldsymbol{X} has an efficient algorithm.

If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?

Because we showed Independent Set \leq_{p} Clique. If Clique had an efficient algorithm, so would Independent Set!

Polynomial-time reductions and hardness

For decision problems X and Y, if $X \leq_{P} Y$, and Y has an efficient algorithm, \boldsymbol{X} has an efficient algorithm.

If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?

Because we showed Independent Set \leq_{p} Clique. If Clique had an efficient algorithm, so would Independent Set!

If $X \leq_{P} Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from \boldsymbol{X} to \boldsymbol{Y}. Then for any instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X}, the size of the instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y} produced from $\boldsymbol{I}_{\boldsymbol{X}}$ by $\boldsymbol{\mathcal { R }}$ is polynomial in the size of $\boldsymbol{I}_{\boldsymbol{X}}$.

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from \boldsymbol{X} to \boldsymbol{Y}. Then for any instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X}, the size of the instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y} produced from $\boldsymbol{I}_{\boldsymbol{X}}$ by \mathcal{R} is polynomial in the size of $\boldsymbol{I}_{\boldsymbol{X}}$.

Proof.

\mathcal{R} is a polynomial-time algorithm and hence on input $\boldsymbol{I}_{\boldsymbol{X}}$ of size $\left|\boldsymbol{I}_{\boldsymbol{X}}\right|$ it runs in time $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ for some polynomial $\boldsymbol{p}()$.
$\boldsymbol{I}_{\boldsymbol{Y}}$ is the output of \mathcal{R} on input $\boldsymbol{I}_{\boldsymbol{X}}$.
\mathcal{R} can write at most $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ bits and hence $\left|\boldsymbol{I}_{\boldsymbol{Y}}\right| \leq \boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$.

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from \boldsymbol{X} to \boldsymbol{Y}. Then for any instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X}, the size of the instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y} produced from $\boldsymbol{I}_{\boldsymbol{X}}$ by \mathcal{R} is polynomial in the size of $\boldsymbol{I}_{\boldsymbol{X}}$.

Proof.

\mathcal{R} is a polynomial-time algorithm and hence on input $\boldsymbol{I}_{\boldsymbol{X}}$ of size $\left|\boldsymbol{I}_{\boldsymbol{X}}\right|$ it runs in time $\boldsymbol{p}\left(\left|I_{X}\right|\right)$ for some polynomial $\boldsymbol{p}()$.
$\boldsymbol{I}_{\boldsymbol{Y}}$ is the output of \mathcal{R} on input $\boldsymbol{I}_{\boldsymbol{X}}$.
\mathcal{R} can write at most $p\left(\left|I_{X}\right|\right)$ bits and hence $\left|I_{Y}\right| \leq p\left(\left|I_{X}\right|\right)$.
Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} that has the following properties:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{\boldsymbol{X}}\right|$. This implies that $\left|\boldsymbol{I}_{\boldsymbol{Y}}\right|$ (size of I_{Y}) is polynomial in $\left|I_{\boldsymbol{X}}\right|$.
(3) Answer to I_{X} YES iff answer to $I_{\boldsymbol{Y}}$ is YES.

Proposition

If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ then a polynomial time algorithm for \boldsymbol{Y} implies a polynomial time algorithm for \boldsymbol{X}.

Transitivity of Reductions

Proposition
 $X \leq_{p} Y$ and $Y \leq_{p} Z$ implies that $X \leq_{p} Z$.

Note: $X \leq_{P} Y$ does not imply that $Y \leq_{P} X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ you need to show a reduction FROM \boldsymbol{X} TO \boldsymbol{Y} That is, show that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}.

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:
(1) A vertex cover if every $e \in E$ has at least one endpoint in S.

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:
(1) A vertex cover if every $e \in E$ has at least one endpoint in S.

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:
(1) A vertex cover if every $e \in E$ has at least one endpoint in S.

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:
(1) A vertex cover if every $e \in E$ has at least one endpoint in S.

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size $\leq k$ in G ?

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size $\leq k$ in G ?

Can we relate Independent Set and Vertex Cover?

Relationship between...

Vertex Cover and Independent Set

Proposition

Let $G=(V, E)$ be a graph. S is an independent set if and only if $\boldsymbol{V} \backslash \boldsymbol{S}$ is a vertex cover.

Proof.

(\Rightarrow) Let S be an independent set
(1) Consider any edge $\boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}$.
(2) Since \boldsymbol{S} is an independent set, either $\boldsymbol{u} \notin \boldsymbol{S}$ or $\boldsymbol{v} \notin \boldsymbol{S}$.
(3) Thus, either $\boldsymbol{u} \in \boldsymbol{V} \backslash \boldsymbol{S}$ or $\boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}$.
(0) $\boldsymbol{V} \backslash \boldsymbol{S}$ is a vertex cover.
(\Leftarrow) Let $V \backslash S$ be some vertex cover:
(1) Consider $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{S}$
(2) $\boldsymbol{u v}$ is not an edge of G , as otherwise $\boldsymbol{V} \backslash \boldsymbol{S}$ does not cover $\boldsymbol{u} \boldsymbol{v}$.
(3 $\Longrightarrow S$ is thus an independent set.

Independent Set \leq_{p} Vertex Cover

(1) \boldsymbol{G} : graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.

Independent Set \leq_{p} Vertex Cover

(1) \boldsymbol{G} : graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.
(2) G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$

Independent Set \leq_{p} Vertex Cover

(1) \boldsymbol{G} : graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.
(2) G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(0) (G, k) is an instance of Independent Set, and $(G, n-k)$ is an instance of Vertex Cover with the same answer.

Independent Set \leq_{p} Vertex Cover

(1) \boldsymbol{G} : graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.
(2) G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(0) (G, k) is an instance of Independent Set, and $(G, n-k)$ is an instance of Vertex Cover with the same answer.
(0) Therefore, Independent Set \leq_{P} Vertex Cover. Also Vertex Cover \leq_{p} Independent Set.

Proving Correctness of Reductions

To prove that $X \leq_{P} Y$ you need to give an algorithm \mathcal{A} that:
(1) Transforms an instance I_{X} of X into an instance $I_{\boldsymbol{Y}}$ of Y.
(2) Satisfies the property that answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES iff $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES.
(1) typical easy direction to prove: answer to I_{Y} is YES if answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES
(2) typical difficult direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES (equivalently answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is NO if answer to I_{Y} is NO).
(3) Runs in polynomial time.

Part III

The Satisfiability Problem (SAT)

Propositional Formulas

Definition

Consider a set of boolean variables $x_{1}, x_{2}, \ldots x_{n}$.
(1) A literal is either a boolean variable x_{i} or its negation $\neg x_{i}$.
(2) A clause is a disjunction of literals.

For example, $x_{1} \vee x_{2} \vee \neg x_{4}$ is a clause.
(3) A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.

Propositional Formulas

Definition

Consider a set of boolean variables $x_{1}, x_{2}, \ldots x_{n}$.
(1) A literal is either a boolean variable x_{i} or its negation $\neg x_{i}$.
(2) A clause is a disjunction of literals.

For example, $x_{1} \vee x_{2} \vee \neg x_{4}$ is a clause.
(3) A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.
(9) A formula φ is a 3 CNF :

A CNF formula such that every clause has exactly 3 literals.
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but

$$
\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5} \text { is not. }
$$

Satisfiability

Problem: SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
(2) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

3SAT

Given a 3CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?
(More on 2SAT in a bit...)

Importance of SAT and 3SAT

(1) SAT and 3SAT are basic constraint satisfaction problems.
(2) Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
(3) Arise naturally in many applications involving hardware and software verification and correctness.
(1) As we will see, it is a fundamental problem in theory of NP-Completeness.

$z=\bar{x}$

Given two bits x, z which of the following SAT formulas is equivalent to the formula $z=\bar{x}$:
(A) $(\bar{z} \vee x) \wedge(z \vee \bar{x})$.
(B) $(z \vee x) \wedge(\bar{z} \vee \bar{x})$.
(C) $(\bar{z} \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(\bar{z} \vee \bar{x})$.
(D) $z \oplus x$.
(E) $(z \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x)$.

$z=x \wedge y$

Given three bits x, y, z which of the following SAT formulas is equivalent to the formula $z=x \wedge y$:
(A) $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(B) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(C) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(D) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(E) $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$ $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(\bar{z} \vee \bar{x} \vee \bar{y})$.

$z=x \vee y$

Given three bits x, y, z which of the following SAT formulas is equivalent to the formula $z=x \vee y$:
(A) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(B) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(C) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(D) $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$ $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(\bar{z} \vee \bar{x} \vee \bar{y})$.
(E) $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})$.

SAT $\leq \mathrm{p} 3 \mathrm{SAT}$

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: $\mathbf{1 , 2 , 3 , \ldots}$ variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg y \vee \neg z \vee w \vee u) \wedge(\neg x)
$$

In 3SAT every clause must have exactly 3 different literals.

SAT \leq_{p} 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg y \vee \neg z \vee w \vee u) \wedge(\neg x)
$$

In 3SAT every clause must have exactly 3 different literals.
To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have exactly $\mathbf{3}$ variables...

Basic idea

(1) Pad short clauses so they have 3 literals.
(2) Break long clauses into shorter clauses.
(3) Repeat the above till we have a 3 CNF .

3 SAT $\leq \mathrm{p}$ SAT

(1) 3 SAT \leq_{p} SAT.
(2) Because...

A 3SAT instance is also an instance of SAT.

SAT \leq_{p} 3SAT

Claim

SAT \leq_{P} 3SAT.

SAT \leq_{p} 3SAT

Claim

SAT $\leq_{p} 3 S A T$.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

SAT \leq_{p} 3SAT

Claim

SAT $\leq_{p} 3 S A T$.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length $\mathbf{3}$, replace it with several clauses of length exactly 3.

SAT \leq_{p} 3SAT

A clause with two literals

Reduction Ideas: clause with 2 literals
(1) Case clause with 2 literals: Let $\boldsymbol{c}=\ell_{1} \vee \ell_{2}$. Let \boldsymbol{u} be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee u\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \neg u\right)
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable iff φ is satisfiable.

SAT \leq_{p} 3SAT

A clause with a single literal

Reduction Ideas: clause with 1 literal

(1) Case clause with one literal: Let \boldsymbol{c} be a clause with a single literal (i.e., $\boldsymbol{c}=\boldsymbol{\ell}$). Let $\boldsymbol{u}, \boldsymbol{v}$ be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & (\ell \vee u \vee v) \wedge(\ell \vee u \vee \neg v) \\
& \wedge(\ell \vee \neg u \vee v) \wedge(\ell \vee \neg u \vee \neg v) .
\end{aligned}
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable iff φ is satisfiable.

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
(1) Case clause with five literals: Let $c=\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee \ell_{u}^{\ell_{4} \vee \ell_{5}}$.
Let \boldsymbol{u} be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee u\right) \wedge\left(\ell_{4} \vee \ell_{5} \vee \neg u\right)
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable iff φ is satisfiable.
$l_{1} \vee l_{2} \vee l_{3} \vee l_{4} \vee l_{5}^{-}$
$\left(l_{1} \vee l_{2} \vee l_{3} \vee u\right) a\left(u \equiv l_{v} \vee l_{5}\right)$

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
(1) Case clause with $\boldsymbol{k}>\mathbf{3}$ literals: Let $c=\ell_{1} \vee \ell_{2} \vee \ldots \vee \ell_{\boldsymbol{k}}$. Let \boldsymbol{u} be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \ell_{k-2} \vee u\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u\right)
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable iff φ is satisfiable.

Breaking a clause

Lemma

For any boolean formulas X and Y and z a new boolean variable. Then

$$
X \vee Y \text { is satisfiable }
$$

if and only if, z can be assigned a value such that

$$
(X \vee z) \wedge(Y \vee \neg z) \text { is satisfiable }
$$

(with the same assignment to the variables appearing in X and Y).

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$ (contd)

Clauses with more than 3 literals

Let $\boldsymbol{c}=\ell_{1} \vee \cdots \vee \ell_{\boldsymbol{k}}$. Let $\boldsymbol{u}_{\mathbf{1}}, \ldots \boldsymbol{u}_{\boldsymbol{k}-3}$ be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & \left(\ell_{1} \vee \ell_{2} \vee u_{1}\right) \wedge\left(\ell_{3} \vee \neg u_{1} \vee u_{2}\right) \\
& \wedge\left(\ell_{4} \vee \neg u_{2} \vee u_{3}\right) \wedge \\
& \cdots \wedge\left(\ell_{k-2} \vee \neg u_{k-4} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
\end{aligned}
$$

Claim

$\varphi=\psi \wedge c$ is satisfiable of $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable.
Another way to see it - reduce size of clause by one:

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \vee \ell_{k-2} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\psi=\left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right)
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right)
\end{aligned}
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right)
\end{aligned}
$$

Overall Reduction Algorithm

Reduction from SAT to 3SAT

```
ReduceSATTo3SAT ( \(\varphi\) ):
    // \(\varphi\) : CNF formula.
    for each clause \(c\) of \(\varphi\) do
        if \(\boldsymbol{c}\) does not have exactly 3 literals then
                construct \(\boldsymbol{c}^{\prime}\) as before
        else
        \(c^{\prime}=c\)
    \(\psi\) is conjunction of all \(\boldsymbol{c}^{\prime}\) constructed in loop
    return Solver3SAT \((\psi)\)
```


Correctness (informal)

φ is satisfiable iff ψ is satisfiable because for each clause c, the new 3 CNF formula \boldsymbol{c}^{\prime} is logically equivalent to \boldsymbol{c}.

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)
No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If there was, then SAT and 3SAT would be solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause $(x \vee y \vee z)$. We need to reduce it to a collection of 2 CNF clauses. Introduce a face variable $\boldsymbol{\alpha}$, and rewrite this as

$$
(x \vee y \vee \alpha) \wedge(\neg \alpha \vee z) \quad \text { (bad! clause with } 3 \text { vars) }
$$

or $(x \vee \alpha) \wedge(\neg \alpha \vee y \vee z)$
(bad! clause with 3 vars).
(In animal farm language: 2SAT good, 3SAT bad.)

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a variable x there would be two vertices with labels $x=0$ and $x=1$). For ever 2 CNF clause add two directed edges in the graph. The edges are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.
Now compute the strong connected components in this graph, and continue from there...)

