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Part I

Greedy Algorithms: Tools and
Techniques
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What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

3 decisions often based on some fixed and simple priority rules
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Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness
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Greedy Algorithm Types

Crude classification:

1 Non-adaptive: fix some ordering of decisions a priori and stick
with the order

2 Adaptive: make decisions adaptively but greedily/locally at each
step

Plan:

1 See several examples

2 Pick up some proof techniques
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Part II

Scheduling Jobs to Minimize Average
Waiting Time
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The Problem

n jobs J1, J2, . . . , Jn. Ji has non-negative processing time pi

One server/machine/person available to process jobs.

Schedule/order the jobs to minimize total or average waiting
time

Waiting time of Ji in schedule σ: sum of processing times of all
jobs scheduled before Ji

J1 J2 J3 J4 J5 J6

time 3 4 1 8 2 6

Example: schedule is J1, J2, J3, J4, J5, J6. Total waiting time is

0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + . . . =

Optimal schedule: Shortest Job First. J3, J5, J1, J2, J6, J4.
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Optimality of SJF

Theorem
Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order
of processing time and hence p1 ≤ p2 ≤ . . . ≤ pn and SJF order is
J1, J2, . . . , Jn.
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Inversions

Definition
A schedule Ji1, Ji2, . . . , Jin is said to have an inversion if there are
jobs Ja and Jb such that S schedules Ja before Jb, but pa > pb.

Claim
If a schedule has an inversion then there is an inversion between two
adjacently scheduled jobs.

Proof: exercise.
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Proof of optimality of SJF

Recall SJF order is J1, J2, . . . , Jn.

Let Ji1, Ji2, . . . , Jin be an optimum schedule with fewest
inversions.

If schedule has no inversions then it is identical to SJF schedule
and we are done.

Otherwise there is an 1 ≤ ` < n such that i` > i`+1 since
schedule has inversion among two adjacently scheduled jobs

Claim
The schedule obtained from Ji1, Ji2, . . . , Jin by exchanging/swapping
positions of jobs Ji` and Ji`+1

is also optimal and has one fewer
inversion.

Assuming claim we obtain a contradiction and hence optimum
schedule with fewest inversions must be the SJF schedule.
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Part III

Scheduling to Minimize Lateness

Chandra Chekuri (UIUC) CS374 11 Spring 2017 11 / 1



Scheduling to Minimize Lateness

1 Given jobs J1, J2, . . . , Jn with deadlines and processing times to
be scheduled on a single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti ,
where ti is its processing time. di : deadline.

3 The lateness of a job is li = max(0, fi − di).
4 Schedule all jobs such that L = max li is minimized.

J1 J2 J3 J4 J5 J6

ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J3 J2 J6 J1 J5 J4

l1 = 2 l5 = 0 l4 = 6
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Greedy Template

Initially R is the set of all requests

curr time = 0
max lateness = 0
while R is not empty do

choose i ∈ R
curr time = curr time + ti
if (curr time > di) then

max lateness = max(curr time − di ,max lateness)

return max lateness

Main task: Decide the order in which to process jobs in R
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Three Algorithms

1 Shortest job first — sort according to ti .
2 Shortest slack first — sort according to di − ti .
3 EDF = Earliest deadline first — sort according to di .

Counter examples for first two: exercise
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Earliest Deadline First

Theorem
Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.
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Inversions

Assume jobs are sorted such that d1 ≤ d2 ≤ . . . ≤ dn. Hence EDF
schedules them in this order.

Definition
A schedule S is said to have an inversion if there are jobs i and j
such that S schedules i before j , but di > dj .

Claim
If a schedule S has an inversion then there is an inversion between
two adjacently scheduled jobs.

Proof: exercise.
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Proof sketch of Optimality of EDP

Let S be an optimum schedule with smallest number of
inversions.

If S has no inversions then this is same as EDF and we are done.

Else S has two adjacent jobs i and j with di > dj .

Swap positions of i and j to obtain a new schedule S ′

Claim
Maximum lateness of S ′ is no more than that of S . And S ′ has
strictly fewer inversions than S .
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Part IV

Maximum Weight Subset of Elements:
Cardinality and Beyond
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Picking k elements to maximize total weight

1 Given n items each with non-negative weights/profits and
integer 1 ≤ k ≤ n.

2 Goal: pick k elements to maximize total weight of items picked.

e1 e2 e3 e4 e5 e6

weight 3 2 1 4 3 2

k = 2:
k = 3:
k = 4:
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Greedy Template

N is the set of all elements X ← ∅
(* X will store all the elements that will be picked *)

while |X | < k and N is not empty do
choose ej ∈ N of maximum weight

add ej to X
remove ej from N

return the set X

Remark: One can rephrase algorithm simply as sorting elements in
decreasing weight order and picking the top k elements but the
above template generalizes to other settings a bit more easily.

Theorem
Greedy is optimal for picking k elements of maximum weight.
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A more interesting problem

1 Given n items N = {e1, e2, . . . , en}. Each item ei has a
non-negative weight wi .

2 Items partitioned into h sets N1,N2, . . . ,Nh. Think of each
item having one of h colors.

3 Given integers k1, k2, . . . , kh and another integer k
4 Goal: pick k elements such that no more than ki from Ni to

maximize total weight of items picked.

e1 e2 e3 e4 e5 e6, e7

weight 3 2 1 4 3 2, 1

N1 = {e1, e2, e3}, N2 = {e4, e5}, N3 = {e6, e7}
k = 5, k1 = 2, k2 = 2, k3 = 2
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Greedy Template

N is the set of all elements X ← ∅
(* X will store all the elements that will be picked *)

while N is not empty do
N ′ = {ei ∈ N | X ∪ {ei} is feasible}
If N ′ ← ∅ break

choose ej ∈ N ′ of maximum weight

add ej to X
remove ej from N

return the set X

Theorem
Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of the general phenomenon of Greedy working for
maximum weight indepedent set in a matroid. Beyond scope of
course.
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Part V

Interval Scheduling
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Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

1 Two jobs with overlapping intervals cannot both be
scheduled!

Chandra Chekuri (UIUC) CS374 24 Spring 2017 24 / 1



Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

1 Two jobs with overlapping intervals cannot both be
scheduled!

Chandra Chekuri (UIUC) CS374 24 Spring 2017 24 / 1



Greedy Template

R is the set of all requests

X ← ∅ (* X will store all the jobs that will be scheduled *)

while R is not empty do
choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R
ES SP FC EF
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Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.
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Earliest Start Time

Process jobs in the order of their starting times, beginning with those
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Figure: Counter example for earliest start time
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Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter
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Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter
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Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.
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Optimal Greedy Algorithm

R is the set of all requests

X ← ∅ (* X stores the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is smallest

add i to X
remove from R all requests that overlap with i

return X

Theorem
The greedy algorithm that picks jobs in the order of their finishing
times is optimal.
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Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be
the set returned by the greedy algorithm. Then O = X?

Not
likely!

Instead we will show that |O| = |X |
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Proof of Optimality: Key Lemma

Lemma
Let i1 be first interval picked by Greedy. There exists an optimum
solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.

Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that
conflicts with i1. (proof later)

1 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O − {j1}) ∪ {i1}.

2 From claim, O′ is a feasible solution (no conflicts).

3 Since |O′| = |O|, O′ is also an optimum solution and it
contains i1.
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Proof of Claim

Claim
If i1 6∈ O, there is exactly one interval j1 ∈ O that conflicts with i1.

Proof.
1 If no j ∈ O conflicts with i1 then O is not optimal!

2 Suppose j1, j2 ∈ O such that j1 6= j2 and both j1 and j2 conflict
with i1.

3 Since i1 has earliest finish time, j1 and i1 overlap at f (i1).

4 For same reason j2 also overlaps with i1 at f (i1).

5 Implies that j1, j2 overlap at f (i1) but intervals in O cannot
overlap.

See figure in next slide.
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Figure for proof of Claim

f(i1) f(j1)

i1

j1

j2

f(j2) time

Figure: Since i1 has the earliest finish time, any interval that conflicts with
it does so at f (i1). This implies j1 and j2 conflict.
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Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: n = 1. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for i < n.
Let I be an instance with n intervals
I ′: I with i1 and all intervals that overlap with i1 removed
G(I ),G(I ′): Solution produced by Greedy on I and I ′

From Lemma, there is an optimum solution O to I and i1 ∈ O.
Let O′ = O − {i1}. O′ is a solution to I ′.

|G(I )| = 1 + |G(I ′)| (from Greedy description)

≥ 1 + |O′| (By induction, G(I ′) is optimum for I ′)
= |O|
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Implementation and Running Time

Initially R is the set of all requests

X ← ∅ (* X stores the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

Presort all requests based on finishing time. O(n log n) time

Now choosing least finishing time is O(1)

Keep track of the finishing time of the last request added to A.
Then check if starting time of i later than that

Thus, checking non-overlapping is O(1)

Total time O(n log n + n) = O(n log n)

Chandra Chekuri (UIUC) CS374 36 Spring 2017 36 / 1



Comments

1 Interesting Exercise: smallest interval first picks at least half the
optimum number of intervals.

2 All requests need not be known at the beginning. Such online
algorithms are a subject of research
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Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time si , a finish
time fi , and a weight wi . We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

(A) Earliest start time first.

(B) Earliest finish time fist.

(C) Highest weight first.

(D) None of the above.

(E) IDK.

Weighted problem can be solved via dynamic prog. See notes.
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Greedy Analysis: Overview

1 Greedy’s first step leads to an optimum solution. Show that
there is an optimum solution leading from the first step of
Greedy and then use induction. Example, Interval Scheduling.

2 Greedy algorithm stays ahead. Show that after each step the
solution of the greedy algorithm is at least as good as the
solution of any other algorithm. Example, Interval scheduling.

3 Structural property of solution. Observe some structural bound
of every solution to the problem, and show that greedy algorithm
achieves this bound. Example, Interval Partitioning (see
Kleinberg-Tardos book).

4 Exchange argument. Gradually transform any optimal solution
to the one produced by the greedy algorithm, without hurting its
optimality. Example, Minimizing lateness.
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Takeaway Points

1 Greedy algorithms come naturally but often are incorrect. A
proof of correctness is an absolute necessity.

2 Exchange arguments are often the key proof ingredient. Focus
on why the first step of the algorithm is correct: need to show
that there is an optimum/correct solution with the first step of
the algorithm.

3 Thinking about correctness is also a good way to figure out
which of the many greedy strategies is likely to work.
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