# CS 374: Algorithms \& Models of Computation 

Chandra Chekuri

University of Illinois, Urbana-Champaign
Spring 2017

# CS 374: Algorithms \& Models of Computation, Spring 2017 

## Context Free Languages and Grammars

Lecture 7
February 7, 2017

## Context Free Languages and Grammars

- Programming Language Specification
- Parsing
- Natural language understanding
- Generative model giving structure

$$
x=(3+y) x z+2 x y
$$

## Programming Languages



## Natural Language Processing

English sentences can be described as

$$
\begin{aligned}
& \langle S\rangle \rightarrow\langle N P\rangle\langle V P\rangle \\
& \langle N P\rangle \rightarrow\langle C N\rangle \mid\langle C N\rangle\langle P P\rangle \\
& \langle V P\rangle \rightarrow\langle C V\rangle \mid\langle C V\rangle\langle P P\rangle \\
& \langle P P\rangle \rightarrow\langle P\rangle\langle C N\rangle \\
& \langle C N\rangle \rightarrow\langle A\rangle\langle N\rangle \\
& \langle C V\rangle \rightarrow\langle V\rangle \mid\langle V\rangle\langle N P\rangle \\
& \langle A\rangle \rightarrow \text { a } \mid \text { the } \\
& \langle N\rangle \rightarrow \text { boy } \mid \text { girl } \mid \text { flower } \\
& \langle V\rangle \rightarrow \text { touches } \mid \text { likes } \mid \text { sees } \\
& \langle P\rangle \rightarrow \text { with }
\end{aligned}
$$

English Sentences
Examples

$$
\begin{aligned}
& \overbrace{\underbrace{\text { a }}_{\text {article noun }} \underbrace{\text { noun-phrs }}_{\text {boy }}}^{\text {verb-phrs }} \overbrace{\underbrace{\text { sees }}_{\text {verb }}}^{\text {verb }} \\
& \overbrace{\underbrace{\text { noun-phes }}_{\text {article }} \underbrace{\text { boy }}_{\text {noum }}}^{\text {noes }} \overbrace{\text { verb }}^{\text {vees }} \underbrace{\text { verlower }}_{\text {noun-phrs-phrs }}
\end{aligned}
$$

## Models of Growth

- L-systems
- http://www.kevs3d.co.uk/dev/lsystems/



## Kolam drawing generated by grammar



## Context Free Grammar (CFG) Definition

## Definition

A CFG is is a quadruple $G=(V, T, P, S)$

- $\boldsymbol{V}$ is a finite set of non-terminal symbols


## Context Free Grammar (CFG) Definition

## Definition

A CFG is is a quadruple $G=(V, T, P, S)$

- $V$ is a finite set of non-terminal symbols
- $\boldsymbol{T}$ is a finite set of terminal symbols (alphabet)


## Context Free Grammar (CFG) Definition

## Definition

A CFG is is a quadruple $G=(V, T, P, S)$

- $V$ is a finite set of non-terminal symbols
- $\boldsymbol{T}$ is a finite set of terminal symbols (alphabet)
- $P$ is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $A \in V$ and $\alpha$ is a string in $(V \cup T)^{*}$. Formally, $P \subset V \times(V \cup T)^{*}$.


## Context Free Grammar (CFG) Definition

## Definition

A CFG is is a quadruple $G=(V, T, P, S)$

- $V$ is a finite set of non-terminal symbols
- $\boldsymbol{T}$ is a finite set of terminal symbols (alphabet)
- $P$ is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $A \in V$ and $\alpha$ is a string in $(V \cup T)^{*}$.
Formally, $P \subset V \times(V \cup T)^{*}$.
- $S \in V$ is a start symbol


## Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$ )


## Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$ )
$S \rightsquigarrow \underset{a}{a S A r} \rightsquigarrow a b S b a \rightsquigarrow a b b S \not \xi_{b} b a \rightsquigarrow a b b b a$


## Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$ )
$S \rightsquigarrow a S A \rightsquigarrow a b S b a \rightsquigarrow a b b S B b a \rightsquigarrow a b b b a$

What strings can $S$ generate like this?

## Palindromes

- Madam in Eden I'm Adam
- Dog doo? Good God!
- Dogma: I am God.
- A man, a plan, a canal, Panama
- Are we not drawn onward, we few, drawn onward to new era?
- Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
- http://www.palindromelist.net


## Examples

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

$$
S \rightarrow O S_{1} \mid \varepsilon
$$

## Examples

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

## $S \rightarrow \epsilon \mid 0 S 1$

## Notation and Convention

Let $G=(V, T, P, S)$ then

- $a, b, c, d, \ldots$, in $T$ (terminals)
- $A, B, C, D, \ldots$, in $V$ (non-terminals)
- $u, v, w, x, y, \ldots$ in $T^{*}$ for strings of terminals
- $\alpha, \beta, \gamma, \ldots$ in $(V \cup T)^{*}$
- $X, Y, Y$ in $V \cup T$


## "Derives" relation

Formalism for how strings are derived/generated

## Definition

Let $G=(V, T, P, S)$ be a CFG. For strings $\alpha_{1}, \alpha_{2} \in(V \cup T)^{*}$ we say $\alpha_{1}$ derives $\alpha_{2}$ denoted by $\alpha_{1} \rightsquigarrow_{G} \alpha_{2}$ if there exist strings $\boldsymbol{\beta}, \gamma, \delta$ in $(V \cup T)^{*}$ such that

- $\alpha_{1}=\beta A \delta$
- $\alpha_{2}=\beta \gamma \delta$
- $A \rightarrow \gamma$ is in $P$.

Examples: $S \rightsquigarrow \epsilon, S \rightsquigarrow 0 S 1,0 S 1 \rightsquigarrow 00 S 11,0 S 1 \rightsquigarrow 01$.

## "Derives" relation continued

## Definition

For integer $k \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{k} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.


## "Derives" relation continued

## Definition

For integer $k \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{k} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.
- Alternative defn: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$


## "Derives" relation continued

## Definition

For integer $k \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{k} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.
- Alternative defn: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$
$\sim_{*}^{*}$ is the reflexive and transitive closure of $\rightsquigarrow$.
$\alpha_{1} \rightsquigarrow^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some $k$.

Examples: $S \sim_{*}^{*} \epsilon, 0 S 1 \sim_{*}^{*} 0000011111$.

## Context Free Languages

## Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S w^{*} w\right\}$.

$$
\alpha A_{\beta} \rightarrow \gamma
$$

## Context Free Languages

## Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S \rightsquigarrow^{*} w\right\}$.

## Definition

A language $L$ is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG $G$ such that $L=L(G)$.

Example

$$
\begin{aligned}
& L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
& \text { () () ( } 1 \text { ) } \\
& s \rightarrow \epsilon \mid 0 S 1 \\
& L=\left\{0^{n} 1^{m} \mid m>n\right\}
\end{aligned}
$$

$$
\begin{aligned}
& B \rightarrow B 1 \mid 1 \\
& S \rightarrow A B \\
& S \leadsto A B \sim O A B \\
& \sim 01 B \sim 011
\end{aligned}
$$

## Closure Properties of CFLs

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

## Closure Properties of CFLs

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

## Theorem

CFLs are closed under union. $L_{1}, L_{2}$ CFLs implies $L_{1} \cup L_{2}$ is a CFL.

$$
\underset{P_{1}, S_{2}}{ } \mid S_{2}
$$

## Closure Properties of CFLs

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

## Theorem

CFLs are closed under union. $L_{1}, L_{2}$ CFLs implies $L_{1} \cup L_{2}$ is a CFL.

## Theorem

CFLs are closed under concatenation. $L_{1}, L_{2}$ CFLs implies $L_{1} \bullet L_{2}$ is a CFL.

$$
S \rightarrow S_{1} S_{2}
$$

## Closure Properties of CFLs

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

## Theorem

CFLs are closed under union. $L_{1}, L_{2}$ CFLs implies $L_{1} \cup L_{2}$ is a CFL.

## Theorem

CFLs are closed under concatenation. $L_{1}, L_{2} C F L$ s implies $L_{1} \bullet L_{2}$ is a CFL.

## Theorem

CFLs are closed under Kleene star. LCFL implies L* $^{*}$ is a CFL.

$$
S \rightarrow \varepsilon \mid S_{1} S \quad \operatorname{Pr}
$$

## Closure Properties of CFLs

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

## Theorem

CFLs are closed under union. $L_{1}, L_{2}$ CFLs implies $L_{1} \cup L_{2}$ is a CFL.

## Theorem

CFLs are closed under concatenation. $L_{1}, L_{2}$ CFLs implies $L_{1} \bullet L_{2}$ is a CFL.

## Theorem

CFLs are closed under Kleene star. L CFL implies L* $^{*}$ is a CFL.

## Exercise

- Prove that every regular language is context-free using previous closure properties.
- Prove the set of regular expressions over an alphabet $\boldsymbol{\Sigma}$ forms a non-regular language which is context-free.


## Closure Properties of CFLs continued

## Theorem

CFLs are not closed under complement or intersection.

```
Theorem
If \(L_{1}\) is a CFL and \(L_{2}\) is regular then \(L_{1} \cap L_{2}\) is a CFL.
```


## Canonical non-CFL

## Theorem <br> $L=\left\{a^{n} b^{n} c^{\boldsymbol{n}} \mid \boldsymbol{n} \geq \mathbf{0}\right\}$ is not context-free.

Proof based on pumping lemma for CFLs. Technical and outside the scope of this class.

## Parse Trees or Derivation Trees

A tree to represent the derivation $S w^{*} w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule


## Parse Trees or Derivation Trees

A tree to represent the derivation $S \sim_{*}^{*} w$.

- Rooted tree with root labeled $S$
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

## Example



## Ambiguity in CFLs

## Definition

A CFG $G$ is ambiguous if there is a string $w \in L(G)$ with two different parse trees. If there is no such string then $G$ is unambiguous.

Example: $S \rightarrow S-S|1| 2 \mid 3$


$$
3-(2-1) \quad(3-2)-1
$$

## Ambiguity in CFLs

- Original grammar: $S \rightarrow S-S|1| 2 \mid 3$
- Unambiguous grammar:

$$
\begin{aligned}
& S \rightarrow S-C|1| 2 \mid 3 \\
& C \rightarrow 1|2| 3
\end{aligned}
$$



The grammar forces a parse corresponding to left-to-right evaluation.

## Inherently ambiguous languages

## Definition

A CFL $L$ is inherently ambiguous if there is no unambiguous CFG $G$ such that $L=L(G)$.

## Inherently ambiguous languages

## Definition

A CFL $L$ is inherently ambiguous if there is no unambiguous CFG $G$ such that $L=L(G)$.

- There exist inherently ambiguous CFLs.

Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$

## Inherently ambiguous languages

## Definition

A CFL $L$ is inherently ambiguous if there is no unambiguous CFG $G$ such that $L=L(G)$.

- There exist inherently ambiguous CFLs.

Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$

- Given a grammar $G$ it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!


## Inductive proofs for CFGs

Question: How do we formally prove that a CFG $L(G)=L$ ?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$
Theorem
$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$

## Inductive proofs for CFGs

Question: How do we formally prove that a CFG $L(G)=L$ ?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$
Theorem
$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$
Two directions:

- $L(G) \subseteq L$, that is, $S w^{*} w$ then $w=w^{R}$
- $L \subseteq L(G)$, that is, $w=w^{R}$ then $S \mathfrak{w}^{*} w$


## $L(G) \subseteq L$

Show that if $S w^{*} w$ then $w=w^{R}$

By induction on length of derivation, meaning For all $k \geq 1, S \mathfrak{w}^{* k} w$ implies $w=w^{R}$.

## $\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}$

Show that if $S w^{*} w$ then $w=w^{R}$
By induction on length of derivation, meaning For all $k \geq 1, S{w^{* k}}^{*}$ implies $w=w^{R}$.

- If $S w^{1} w$ then $w=\epsilon$ or $w=a$ or $w=b$. Each case $w=w^{R}$.
- Assume that for all $k<n$, that if $S \sim^{k} w$ then $w=w^{R}$
- Let $S w^{n} w$ (with $n>1$ ). Wlog $w$ begin with $a$.
- Then $S \rightarrow$ aSa $n^{\prime}>-1$ aua where $w=a u a$.
- And $\boldsymbol{S} \rightsquigarrow^{\boldsymbol{n - 1}} \boldsymbol{u}$ and hence $\mathrm{IH}, \boldsymbol{u}=\boldsymbol{u}^{R}$.
- Therefore $w^{r}=(a u a)^{R}=(u a)^{R} a=a u^{R} a=a u a=w$.


## $L \subseteq L(G)$

Show that if $w=w^{R}$ then $S w^{*} w$.
By induction on $|w|$
That is, for all $k \geq 0,|w|=k$ and $w=w^{R}$ implies $S \sim^{*} w$.
Exercise: Fill in proof.

## Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

## Normal Forms

Normal forms are a way to restrict form of production rules
Advantage: Simpler/more convenient algorithms and proofs

## Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form


## Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\boldsymbol{A} \rightarrow \boldsymbol{B C}$ or $\boldsymbol{A} \rightarrow \boldsymbol{a}$.

If $\epsilon \in L$ then $S \rightarrow \epsilon$ is also allowed.

- Every CFG $G$ can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.


## Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\boldsymbol{A} \rightarrow B C$ or $\boldsymbol{A} \rightarrow \boldsymbol{a}$.

If $\epsilon \in L$ then $S \rightarrow \epsilon$ is also allowed.

- Every CFG $G$ can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.


## Greiback Normal Form:

- Only productions of the form $\boldsymbol{A} \rightarrow \boldsymbol{a} \boldsymbol{\beta}$ are allowed.
- All CFLs without $\epsilon$ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack


PDAs and CFGs are equivalent: both generate exactly CFLs. PDA is a machine-centric view of CFLs.

