CS 374: Algorithms & Models of Computation

Chandra Chekuri

University of Illinois, Urbana-Champaign

Spring 2017

CS 374: Algorithms & Models of Computation, Spring 2017

Strings and Languages

Lecture 1
January 17, 2017

Part I

Strings

String Definitions

Definition

- **1** An alphabet is a **finite** set of symbols. For example $\Sigma = \{0, 1\}$, $\Sigma = \{a, b, c, \dots, z\}$, $\Sigma = \{\langle \text{moveforward} \rangle, \langle \text{moveback} \rangle\}$ are alphabets.
- ② A string/word over Σ is a **finite sequence** of symbols over Σ . For example, '0101001', 'string', ' $\langle moveback \rangle \langle rotate90 \rangle$ '
- \odot ϵ is the empty string.
- The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101| = 3, $|\epsilon| = 0$
- 5 For integer $n \ge 0$, Σ^n is set of all strings over Σ of length n. Σ^* is th set of all strings over Σ .

Formally

Formally strings are defined recursively/inductively:

- \bullet ϵ is a string of length 0
- ax is a string if $a \in \Sigma$ and x is a string. The length of ax is 1 + |x|

The above definition helps prove statements rigorously via induction.

• Alternative recursive defintion useful in some proofs: xa is a string if $a \in \Sigma$ and x is a string. The length of xa is 1 + |x|

Convention

- a, b, c, \ldots denote elements of Σ
- w, x, y, z, \ldots denote strings
- A, B, C, ... denote sets of strings

Much ado about nothing

- ullet is a string containing no symbols. It is not a set
- $\{\epsilon\}$ is a set containing one string: the empty string. It is a set, not a string.
- Ø is the empty set. It contains no strings.
- {∅} is a set containing one element, which itself is a set that contains no elements.

Concatenation and properties

If x and y are strings then xy denotes their concatenation.
 Formally we define concatenation recursively based on definition of strings:

```
• xy = y if x = \epsilon
• xy = a(wy) if x = aw
```

Sometimes xy is written as $x \cdot y$ to explicitly note that \cdot is a binary operator that takes two strings and produces another string.

- concatenation is associative: (uv)w = u(vw) and hence we write uvw
- not commutative: uv not necessarily equal to vu
- identity element: $\epsilon u = u\epsilon = u$

Substrings, prefix, suffix, exponents

Definition

- ① v is substring of w iff there exist strings x, y such that w = xvy.
 - If $x = \epsilon$ then v is a prefix of w
 - If $y = \epsilon$ then v is a suffix of w
- ② If w is a string then w^n is defined inductively as follows:

$$w^n = \epsilon$$
 if $n = 0$
 $w^n = ww^{n-1}$ if $n > 0$

Example: $(blah)^4 = blahblahblah$.

8

Set Concatenation

Definition

Given two sets A and B of strings (over some common alphabet Σ) the concatenation of A and B is defined as:

$$AB = \{xy \mid x \in A, y \in B\}$$

Example: $A = \{fido, rover, spot\}, B = \{fluffy, tabby\}$ then $AB = \{fidofluffy, fidotabby, roverfluffy, \ldots\}.$

\(\Sigma\) and languages

Definition

 \Sigma^n is the set of all strings of length n. Defined inductively as follows:

$$\Sigma^n = \{\epsilon\} \text{ if } n = 0$$

 $\Sigma^n = \Sigma \Sigma^{n-1} \text{ if } n > 0$

- ② $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$ is the set of all finite length strings
- **3** $\Sigma^+ = \bigcup_{n \geq 1} \Sigma^n$ is the set of non-empty strings.

Example 2 and languages

Definition

\bullet Σ^n is the set of all strings of length n. Defined inductively as follows:

$$\Sigma^n = \{\epsilon\}$$
 if $n = 0$
 $\Sigma^n = \Sigma \Sigma^{n-1}$ if $n > 0$

- ② $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$ is the set of all finite length strings
- **3** $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Exercise

Answer the following questions taking $\Sigma = \{0, 1\}$.

- What is Σ^0 ? = $\{ \mathcal{E} \}$
- **2** How many elements are there in Σ^3 ? = $|\Sigma|^3 = S$
- **1** How many elements are there in Σ^n ? $\geq 2^{h}$
- **1** What is the length of the longest string in Σ ? Does Σ^* have strings of infinite length?
- If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- **1** Let u be an arbitrary string Σ^* . What is ϵu ? What is $u\epsilon$?
- **1** Is uv = vu for every $u, v \in \Sigma^*$?
- **3** Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Canonical order and countability of strings

Definition

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Alternatively: A is countably infinite if A is an infinite set and there enumeration of elements of A

Canonical order and countability of strings

Definition

An set \boldsymbol{A} is countably infinite if there is a bijection \boldsymbol{f} between the natural numbers and \boldsymbol{A} .

Alternatively: A is countably infinite if A is an infinite set and there enumeration of elements of A

Theorem

 Σ^* is countably infinite for every finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a,b,c\}^* = \{\epsilon,a,b,c,aa,ab,ac,ba,bb,bc,\ldots\}$

Exercise

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countably infinite?

Exercise

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countably infinite?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countably infinite?

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^R of a string w is defined as follows:

- $w^R = \epsilon$ if $w = \epsilon$
- $w^R = x^R a$ if w = ax for some $a \in \Sigma$ and string x

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^R of a string w is defined as follows:

- $w^R = \epsilon$ if $w = \epsilon$
- $w^R = x^R a$ if w = ax for some $a \in \Sigma$ and string x

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Example: $(dog \cdot cat)^R = (cat)^R \cdot (dog)^R = tacgod$.

Principle of mathematical induction

Induction is a way to prove statements of the form $\forall n \geq 0, P(n)$ where P(n) is a statement that holds for integer n.

Example: Prove that $\sum_{i=0}^{n} i = n(n+1)/2$ for all n.

Induction template:

- Base case: Prove P(0)
- Induction Step: Let n > 0 be arbitrary integer. Assuming that P(k) holds for $0 \le k < n$, prove that P(n) holds.

Unlike the simple cases we will be working with various more complicated "structures" such as strings, tuples of strings, graphs etc. We need to translate a statement "Q" into a (stronger or equivalent) statement that looks like " $\forall n \geq 0, P(n)$ and then apply induction. We call $\forall n \geq 0, P(n)$ the induction hypothesis.

Proving the theorem

$\mathsf{Theorem}$

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof: by induction.

On what?? |uv| = |u| + |v|?

|u|?

 $|\mathbf{v}|$?

What does it mean to say "induction on |u|"?

By induction on |u|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any string u of length n (for all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$).

By induction on u

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any string u of length n (for all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$).

Base case: Let u be an arbitrary stirng of length 0. $u = \epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

By induction on u

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any string u of length n (for all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$).

Base case: Let u be an arbitrary stirng of length 0. $u = \epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Note that we did not assume anything about v, hence the statement holds for all $v \in \Sigma^*$.

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (ayv)^{R} = (a(yv))^{R}$$

$$= (yv)^{R} a^{R}$$

$$= v^{R}y^{R}a^{R}$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}a^{R}$$

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R} - appriation of the constant of the c$$

Induction on |v|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following.

Induction on v

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any string v of length n (for all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$).

Induction on v

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any string v of length n (for all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$).

Base case: Let v be an arbitrary stirng of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (u(ay))^{R}$$

$$= ((ua)y)^{R}$$

$$= y^{R}(ua)^{R}$$

$$= ??$$

Cannot simplify $(ua)^R$ using inductive hypotheis. Can simplify if we extend base case to include n=0 and n=1. However, n=1 itself requires induction on |u|!

Induction on |u| + |v|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction on $|\mathbf{u}| + |\mathbf{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction hypothesis:

Induction on $|\mathbf{u}| + |\mathbf{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Induction on $|\mathbf{u}| + |\mathbf{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n=0. Let u, v be an arbitrary stirngs such that |u|+|v|=0. Implies $u, v=\epsilon$.

Induction on |u| + |v|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n=0. Let u, v be an arbitrary stirngs such that |u|+|v|=0. Implies $u, v=\epsilon$.

Inductive step e: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

Part II

Languages

Languages

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Languages

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\bar{A} = \Sigma^* \setminus A$.

Exponentiation, Kleene star etc

Definition

For a language $L \subseteq \Sigma^*$ and $n \in \mathbb{N}$, define L^n inductively as follows.

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0 \\ L \bullet (L^{n-1}) & \text{if } n > 0 \end{cases}$$

And define $L^* = \bigcup_{n \geq 0} L^n$, and $L^+ = \bigcup_{n \geq 1} L^n$

Exercise

Problem

Answer the following questions taking $A, B \subseteq \{0, 1\}^*$.

- What is ∅ A? What is A ∅?
- **3** What is $\{\epsilon\} \cdot A$? And $A \cdot \{\epsilon\}$?
- If |A| = 2 and |B| = 3, what is $|A \cdot B|$?

Exercise

Problem

Consider languages over $\Sigma = \{0, 1\}$.

- What is \emptyset^0 ?
- ② If |L| = 2, then what is $|L^4|$?
- **3** What is \emptyset^* , $\{\epsilon\}^*$, ϵ^* ?
- For what L is L* finite?
- **1** What is \emptyset^+ , $\{\epsilon\}^+$, ϵ^+ ?

What are we interested in computing? Mostly functions.

Informal defintion: An algorithm \mathcal{A} computes a function $f: \Sigma^* \to \Sigma^*$ if for all $w \in \Sigma^*$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs f(w).

Examples of functions:

- Numerical functions: length, addition, multiplication, division etc
- ullet Given graph $oldsymbol{G}$ and $oldsymbol{s}, oldsymbol{t}$ find shortest paths from $oldsymbol{s}$ to $oldsymbol{t}$
- Given program M check if M halts on empty input
- Posts Correspondence problem

Definition

A function f over Σ^* is a boolean if $f: \Sigma^* \to \{0,1\}$.

28

Definition

A function f over Σ^* is a boolean if $f: \Sigma^* \to \{0,1\}$.

Observation: There is a bijection between boolean functions and languages.

ullet Given boolean function $f: oldsymbol{\Sigma}^* o \{0,1\}$ define language $L_f = \{w \in oldsymbol{\Sigma}^* \mid f(w) = 1\}$

Definition

A function f over Σ^* is a boolean if $f: \Sigma^* \to \{0,1\}$.

Observation: There is a bijection between boolean functions and languages.

- ullet Given boolean function $f: oldsymbol{\Sigma}^* o \{0,1\}$ define language $L_f = \{w \in oldsymbol{\Sigma}^* \mid f(w) = 1\}$
- Given language $L \subseteq \Sigma^*$ define boolean function $f: \Sigma^* \to \{0,1\}$ as follows: f(w) = 1 if $w \in L$ and f(w) = 0 otherwise.

Language recognition problem

Definition

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

Language recognition problem

Definition

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f?

Language recognition problem

Definition

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f?

Why two different views? Helpful in understanding different aspects?

How many languages are there?

Recall:

Definition

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countably infinite for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

How many languages are there?

Recall:

Definition

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countably infinite for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem (Cantor)

 $\mathbb{P}(\mathbf{\Sigma}^*)$ is **not** countably infinite if $|\mathbf{\Sigma}| \geq 2$.

Cantor's diagonalization argument

Theorem (Cantor)

 $\mathbb{P}(\mathbb{N})$ is not countably infinite.

- Suppose $\mathbb{P}(\mathbb{N})$ is countable infinite. Let S_1, S_2, \ldots , be an enumeration of all subsets of numbers.
- Let **D** be the following diagonal subset of numbers.

$$D = \{i \mid i \not\in L_i\}$$

- Since D is a set of numbers, by assumption, $D = S_j$ for some j.
- Question: $|j| \in D$?

Consequences for Computation

- How many C programs are there? The set of C programs is countably infinite since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any **C** program to recognize them.

Questions:

Consequences for Computation

- How many C programs are there? The set of C programs is countably infinite since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

- Maybe interesting languages/functions have C programs and hence computable. Only uninteresting langues uncomputable?
- Why should C programs be the definition of computability?
- Ok, there are difficult problems/languages. what lanauges are computable and which have efficient algorithms?

Easy languages

Definition

A language $L \subseteq \Sigma^*$ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem

The set of all finite languages is countably infinite.