1. A *Hamiltonian cycle* in a graph *G* is a cycle that goes through every vertex of *G* exactly once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A *tonian cycle* in a graph *G* is a cycle that goes through at least *half* of the vertices of *G*. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

Solution (duplicate the graph): I'll describe a polynomial-time reduction from Hamiltonian Cycle. Let G be an arbitrary graph. Let H be a graph consisting of two disjoint copies of G, with no edges between them; call these copies G_1 and G_2 . I claim that G has a Hamiltonian cycle if and only if H has a tonian cycle.

- \implies Suppose G has a Hamiltonian cycle C. Let C_1 be the corresponding cycle in G_1 . C_1 contains exactly half of the vertices of H, and thus is a tonian cycle in H.
- \Leftarrow On the other hand, suppose H has a tonian cycle C. Because there are no edges between the subgraphs G_1 and G_2 , this cycle must lie entirely within one of these two subgraphs. G_1 and G_2 each contain exactly half the vertices of H, so C must also contain exactly half the vertices of H, and thus is a *Hamiltonian* cycle in either G_1 or G_2 . But G_1 and G_2 are just copies of G. We conclude that G has a Hamiltonian cycle.

Given G, we can construct H in polynomial time by brute force.

Solution (add n **new vertices):** I'll describe a polynomial-time reduction from Hamiltonian Cycle. Let G be an arbitrary graph, and suppose G has n vertices. Let H be a graph obtained by adding n new vertices to G, but no additional edges. I claim that G has a Hamiltonian cycle if and only if H has a tonian cycle.

- \implies Suppose G has a Hamiltonian cycle C. Then C visits exactly half the vertices of H, and thus is a tonian cycle in H.
- \leftarrow On the other hand, suppose H has a tonian cycle C. This cycle cannot visit any of the new vertices, so it must lie entirely within the subgraph G. Since G contains exactly half the vertices of H, the cycle C must visit every vertex of G, and thus is a Hamiltonian cycle in G.

Given G, we can construct H in polynomial time by brute force.

2. *Big Clique* is the following decision problem: given a graph G = (V, E), does G have a clique of size at least n/2 where n = |V| is the number of nodes? Prove that *Big Clique* is NP-hard.

Solution: Recall that an instance of CLIQUE consists of a graph G = (V, E) and integer k. (G, k) is a YES instance if G has a clique of size at least k, otherwise it is a NO instance. For simplicity we will assume n is an even number.

We describe a polynomial-time reduction from CLIQUE to BIG CLIQUE. We consider two cases depending on whether $k \le n/2$ or not. If $k \le n/2$ we obtain a graph G' = (V', E') as follows. We add a set of X new vertices where |X| = n - 2k; thus $V' = V \uplus X$. We make X a clique by adding all possible edges between vertices of X. In addition we connect each vertex $v \in X$ to each vertex $u \in V$. In other words $E' = E \cup \{(u,v) \mid u \in V, v \in X\} \cup \{(a,b) \mid a,b \in X\}$. If k > n/2 we let G' = (V',E') where $V' = V \uplus X$ and E' = E, where |X| = 2k - n. In other words we add 2k - n new vertices which are isolated and have no edges incident on them.

We make the following relatively easy claims that we leave as exercises.

Claim 1. Suppose $k \le n/2$. Then for any clique S in G, $S \cup X$ is a clique in G'. For any clique $S' \in G'$ the set $S' \setminus X$ is a clique in G.

Claim 2. Suppose k > n/2. Then S is a clique in G' iff $S \cap X = \emptyset$ and S is a clique in G.

Now we prove the correctness of the reduction. We need to show that G has a clique of size k if and only if G' has a clique of size n'/2 where n' is the number of nodes in G'.

- ⇒ Suppose *G* has a clique *S* of size *k*. We consider two cases. If k > n/2 then n' = n + 2k n = 2k; note that *S* is a clique in *G'* as well and hence *S* is a big clique in *G'* since $|S| = k \ge n'/2$. If $k \le n/2$, by the first claim, $S \cup X$ is a clique in *G'* of size k + |X| = k + n 2k = n k. Moreover, n' = n + n 2k = 2n 2k and hence $S \cup X$ is a big clique in *G'*. Thus, in both cases *G'* has a big clique.
- Esuppose G' has a clique of size at least n'/2 in G'. Let it be S'; $|S'| \ge n'/2$. We consider two cases again. If $k \le n/2$, we have n' = 2n 2k and $|S'| \ge n k$. By the first claim, $S = S' \setminus X$ is a clique in G. $|S| \ge |S'| |X| \ge n k (n 2k) \ge k$. Hence G has a clique of size k. If k > n/2, by the second claim S' is a clique in G and $|S'| \ge n'/2 = (n + 2k n)/2 = k$. Therefore, in this case as well G has a clique of size k.

- 3. Recall the following kColor problem: Given an undirected graph G, can its vertices be colored with k colors, so that every edge touches vertices with two different colors?
 - (a) Describe a direct polynomial-time reduction from 3Color to 4Color.

Solution: Suppose we are given an arbitrary graph G. Let H be the graph obtained from G by adding a new vertex G (called an G) with edges to every vertex of G. I claim that G is 3-colorable if and only if G is 4-colorable.

- \implies Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G, and call the colors "red", "green", and "blue". Assign the new apex a the color "plaid". Let uv be an arbitrary edge in H.
 - If both u and v are vertices in G, they have different colors.
 - Otherwise, one endpoint of uv is plaid and the other is not, so u and v have different colors.

We conclude that we have a valid 4-coloring of H, so H is 4-colorable.

Suppose H is 4-colorable. Fix an arbitrary 4-coloring; call the apex's color "plaid" and the other three colors "red", "green", and "blue". Each edge uv in G is also an edge of H and therefore has endpoints of two different colors. Each vertex v in G is adjacent to the apex and therefore cannot be plaid. We conclude that by deleting the apex, we obtain a valid 3-coloring of G, so G is 3-colorable.

We can easily transform G into H in polynomial time by brute force.

(b) Prove that kColor problem is NP-hard for any $k \ge 3$.

Solution (direct): The lecture notes include a proof that 3Color is NP-hard. For any integer k > 3, I'll describe a direct polynomial-time reduction from 3Color to kColor.

Let G be an arbitrary graph. Let H be the graph obtain from G by adding k-3 new vertices $a_1, a_2, \ldots, a_{k-3}$, each with edges to every other vertex in H (including the other a_i 's). I claim that G is 3-colorable if and only if H is k-colorable.

- \implies Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G. Color the new vertices $a_1, a_2, \ldots, a_{k-3}$ with k-3 new distinct colors. Every edge in G is either an edge in G or uses at least one new vertex G; in either case, the endpoints of the edge have different colors. We conclude that G is G in either case, the endpoints of the edge have different colors.
- \leftarrow Suppose H is k-colorable. Each vertex a_i is adjacent to every other vertex in H, and therefore is the only vertex of its color. Thus, the vertices of G use only three distinct colors. Every edge of G is also an edge of H, so its endpoints have different colors. We conclude that the induced coloring of G is a proper 3-coloring, so G is 3-colorable.

Given G, we can construct H in polynomial time by brute force.

Solution (induction): Let k be an arbitrary integer with $k \ge 3$. Assume that jColor is NP-hard for any integer $3 \le j < k$. There are two cases to consider.

- If k = 3, then kCOLOR is NP-hard by the reduction from 3SAT in the lecture notes.
- Suppose k=3. The reduction in part (a) directly generalizes to a polynomial-time reduction from (k-1)Color to kColor: To decide whether an arbitrary graph G is (k-1)-colorable, add an apex and ask whether the resulting graph is k-colorable. The induction hypothesis implies that (k-1)Color is NP-hard, so the reduction implies that kColor is NP-hard.

In both cases, we conclude that *k*Color is NP-hard.

To think about later:

3. Let *G* be an undirected graph with weighted edges. A Hamiltonian cycle in *G* is *heavy* if the total weight of edges in the cycle is at least half of the total weight of all edges in *G*. Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

Solution (two new vertices): I'll describe a polynomial-time a reduction from the Hamiltonian *path* problem. Let *G* be an arbitrary undirected graph (without edge weights). Let *H* be the edge-weighted graph obtained from *G* as follows:

- Add two new vertices s and t.
- Add edges from *s* and *t* to all the other vertices (including each other).
- Assign weight 1 to the edge st and weight 0 to every other edge.

The total weight of all edges in H is 1. Thus, a Hamiltonian cycle in H is heavy if and only if it contains the edge st. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a Hamiltonian path.

- \implies First, suppose G has a Hamiltonian path from vertex u to vertex v. By adding the edges vs, st, and tu to this path, we obtain a Hamiltonian cycle in H. Moreover, this Hamiltonian cycle is heavy, because it contains the edge st.
- \leftarrow On the other hand, suppose H has a heavy Hamiltonian cycle. This cycle must contain the edge st, and therefore must visit all the other vertices in H contiguously. Thus, deleting vertices s and t and their incident edges from the cycle leaves a Hamiltonian path in G.

Given *G*, we can easily construct *H* in polynomial time by brute force.

Solution (smartass): I'll describe a polynomial-time a reduction from the standard Hamiltonian cycle problem. Let G be an arbitrary graph (without edge weights). Let H be the edge-weighted graph obtained from G by assigning each edge weight 0. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a Hamiltonian path.

- \implies Suppose G has a Hamiltonian cycle C. The total weight of C is at least half the total weight of all edges in H, because $0 \ge 0/2$. So C is a heavy Hamiltonian cycle in H.
- \leftarrow Suppose H has a heavy Hamiltonian cycle C. By definition, C is also a Hamiltonian cycle in G.

Given *G*, we can easily construct *H* in polynomial time by brute force.