Rice's Theorem. Let \mathcal{L} be any set of languages that satisfies the following conditions:

- There is a Turing machine Y such that $\operatorname{Accept~}(Y) \in \mathcal{L}$.
- There is a Turing machine N such that $\operatorname{Accept}(N) \notin \mathcal{L}$.

The language $\operatorname{Acceptin}(\mathcal{L}):=\{\langle M\rangle \mid \operatorname{Accept}(M) \in \mathcal{L}\}$ is undecidable.

Prove that the following languages are undecidable using Rice's Theorem:

1. Acceptregular $:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is regular $\}$
2. Acceptillini $:=\{\langle M\rangle \mid M$ accepts the string ILLINI $\}$
3. AcceptPalindrome $:=\{\langle M\rangle \mid M$ accepts at least one palindrome $\}$
4. AcceptThree $:=\{\langle M\rangle \mid M$ accepts exactly three strings $\}$
5. AcceptUndecidable $:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is undecidable $\}$

To think about later. Which of the following are undecidable? How would you prove that?

1. $\operatorname{Accept}\{\{\varepsilon\}\}:=\{\langle M\rangle \mid M$ accepts only the string ε; that is, $\operatorname{Accept}(M)=\{\varepsilon\}\}$
2. $\operatorname{Accept}\{\varnothing\}:=\{\langle M\rangle \mid M$ does not accept any strings; that is, $\operatorname{Accept}(M)=\varnothing\}$
3. $\operatorname{Accept} \varnothing:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is not an acceptable language $\}$
4. $\operatorname{Accept}=\operatorname{Reject}:=\{\langle M\rangle \mid \operatorname{Accept}(M)=\operatorname{Reject}(M)\}$
5. $\operatorname{Accept} \neq \operatorname{Reject}:=\{\langle M\rangle \mid \operatorname{Accept}(M) \neq \operatorname{Reject}(M)\}$
6. $\operatorname{Accept\cup Reject~}:=\left\{\langle M\rangle \mid \operatorname{Accept}(M) \cup \operatorname{Reject}(M)=\Sigma^{*}\right\}$
