- 1. Suppose you are given a magic black box that somehow answers the following decision problem in *polynomial time*:
  - INPUT: A CNF formula  $\varphi$  with *n* variables  $x_1, x_2, \ldots, x_n$ .
  - OUTPUT: TRUE if there is an assignment of TRUE or FALSE to each variable that satisfies  $\varphi$ .

Using this black box as a subroutine, describe an algorithm that solves the following related search problem *in polynomial time*:

- INPUT: A CNF formula  $\varphi$  with *n* variables  $x_1, \ldots, x_n$ .
- OUTPUT: A truth assignment to the variables that satisfies  $\varphi$ , or NONE if there is no satisfying assignment.

[Hint: You can use the magic box more than once.]

- 2. An *independent set* in a graph *G* is a subset *S* of the vertices of *G*, such that no two vertices in *S* are connected by an edge in *G*. Suppose you are given a magic black box that somehow answers the following decision problem *in polynomial time*:
  - INPUT: An undirected graph *G* and an integer *k*.
  - OUTPUT: TRUE if *G* has an independent set of size *k*, and FALSE otherwise.
  - (a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem *in polynomial time*:
    - INPUT: An undirected graph *G*.
    - OUTPUT: The size of the largest independent set in G.

[Hint: You've seen this problem before.]

- (b) Using this black box as a subroutine, describe algorithms that solves the following search problem *in polynomial time*:
  - INPUT: An undirected graph G.
  - OUTPUT: An independent set in *G* of maximum size.

## To think about later:

3. Formally, a *proper coloring* of a graph G = (V, E) is a function  $c: V \rightarrow \{1, 2, ..., k\}$ , for some integer k, such that  $c(u) \neq c(v)$  for all  $uv \in E$ . Less formally, a valid coloring assigns each vertex of G a color, such that every edge in G has endpoints with different colors. The *chromatic number* of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision problem *in polynomial time*:

- INPUT: An undirected graph *G* and an integer *k*.
- OUTPUT: TRUE if *G* has a proper coloring with *k* colors, and FALSE otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following *coloring problem in polynomial time*:

- INPUT: An undirected graph *G*.
- OUTPUT: A valid coloring of *G* using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph and **only** a graph, meaning **only** vertices and edges.]