
CS/ECE 374] Spring 2017

Y Homework 6 Z
Due Wednesday, March 8, 2017 at 10am

Groups of up to three people can submit joint solutions. Each problem should be submitted
by exactly one person, and the beginning of the homework should clearly state the Gradescope
names and email addresses of each group member. In addition, whoever submits the homework
must tell Gradescope who their other group members are.

The following unnumbered problems are not for submission or grading. No solutions for them
will be provided but you can discuss them on Piazza.

• Suppose you are given a DFA M = (Q,Σ,δ, s, F) and a binary string w ∈ Σ∗ where
Σ = {0,1}. Describe and analyze an algorithm that computes the longest subsequence
of w that is accepted by M , or correctly reports that M does not accept any subsequence of
w.

• Problem 6.21 in Dasgupta etal on finding the minimum sized vertex cover in a tree.

1. The McKing chain wants to open several restaurants along Red street in Shampoo-Banana.
The possible locations are at L1, L2, . . . , Ln where Li is at distance mi meters from the
start of Red street. Assume that the street is a straight line and the locations are in
increasing order of distance from the starting point (thus 0 ≤ m1 < m2 < . . . < mn).
McKing has collected some data indicating that opening a restaurant at location Li will
yield a profit of pi independent of where the other restaurants are located. However, the
city of Shampoo-Banana has a zoning law which requires that any two McKing locations
should be D or more meters apart. In addition McKing does not want to open more than k
restaurants due to budget constraints. Describe an algorithm that McKing can use to figure
out the maximum profit it can obtain by opening restaurants while satisfying the city’s
zoning law and the constraint of opening at most k restaurants. Your algorithm should use
only O(n) space.

2. Let X = x1, x2, . . . , xr , Y = y1, y2, . . . , ys and Z = z1, z2, . . . , zt be three sequences. A
common supersequence of X , Y and Z is another sequence W such that X , Y and Z are
subsequences of W . Suppose X = a, b, d, c and Y = b, a, b, e, d and Z = b, e, d, c. A
simple common supersequence of X , Y and Z is the concatenation of X , Y and Z which is
a, b, d, c, b, a, b, e, d, b, e, d, c and has length 13. A shorter one is b, a, b, e, d, c which has
length 6. Describe an efficient algorithm to compute the length of the shortest common
supersequence of three given sequences X , Y and Z .

3. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only
the root node knows the message. In a single round, any node that knows the message can
forward it to at most one of its children. Design an algorithm to compute the minimum
number of rounds required for the message to be delivered to all nodes in a given tree. See
figure below for an example. Assume that the tree is binary (number of children is at most
2).

CS/ECE 374 Homework 6 (due March 8) Spring 2017

�. D������ P����������

indicates that the employee and their supervisor actually like each other. Your goal is
to choose a subset of exactly k employees to invite, so that the total awkwardness
of the resulting party is as small as possible. For example, if the guest list does not
include both an employee and their immediate supervisor, the total awkwardness is
zero. The input to your algorithm is the tree T , the integer k, and the awkwardness
of each node in T .

(a) Describe an algorithm that computes the total awkwardness of the least awkwardExam
subset of k employees, assuming the company hierarchy is described by a binary
tree. That is, assume that each employee directly supervises at most two others.

(b) Describe an algorithm that computes the total awkwardness of the least awkwardHomework
subset of k employees, with no restrictions on the company hierarchy.

��. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially,Exam
only the root node knows the message. In a single round, any node that knows the
message can forward it to at most one of its children. Design an algorithm to compute
the minimum number of rounds required for the message to be delivered to all nodes
in a given tree.

A message being distributed through a tree in �ve rounds.

��. One day, Alex got tired of climbing in a gym and decided to take a very large groupHomework
of climber friends outside to climb. The climbing area where they went, had a huge
wide boulder, not very tall, with various marked hand and foot holds. Alex quickly
determined an “allowed” set of moves that her group of friends can perform to get
from one hold to another.

The overall system of holds can be described by a rooted tree T with n vertices,
where each vertex corresponds to a hold and each edge corresponds to an allowed
move between holds. The climbing paths converge as they go up the boulder, leading
to a unique hold at the summit, represented by the root of T .¹⁷

Alex and her friends (who are all excellent climbers) decided to play a game,
where as many climbers as possible are simultaneously on the boulder and each
climber needs to perform a sequence of exactly k moves. Each climber can choose an
arbitrary hold to start from, and all moves must move away from the ground. Thus,
each climber traces out a path of k edges in the tree T , all directed toward the root.

��Q: Why do computer science professors think trees have their roots at the top?
A: Because they’ve never been outside!

��

Solved Problems

4. A string w of parentheses ((and)) and brackets [[and]] is balanced if it is generated by
the following context-free grammar:

S→ ε | ((S)) | [[S]] | SS

For example, the string w= (([[(())]][[]](())))[[(())(())]](()) is balanced, because w= x y , where

x = (([[(())]] [[]] (()))) and y = [[(()) (())]] (()).

Describe and analyze an algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses and brackets. Your input is an array A[1 .. n],
where A[i] ∈ {((,)),[[,]]} for every index i.

Solution: Suppose A[1 .. n] is the input string. For all indices i and j, we write A[i] ∼ A[j]
to indicate that A[i] and A[j] are matching delimiters: Either A[i] = ((and A[j] =)) or
A[i] = [[and A[j] =]].

For all indices i and j, let LBS(i, j) denote the length of the longest balanced subsequence
of the substring A[i .. j]. We need to compute LBS(1, n). This function obeys the following
recurrence:

LBS(i, j) =

0 if i ≥ j

max

(

2+ LBS(i + 1, j − 1)
j−1

max
k=1

�

LBS(i, k) + LBS(k+ 1, j)
�

)

if A[i]∼ A[j]

j−1
max
k=1

�

LBS(i, k) + LBS(k+ 1, j)
�

otherwise

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n]. Since
every entry LBS[i, j] depends only on entries in later rows or earlier columns (or both), we
can evaluate this array row-by-row from bottom up in the outer loop, scanning each row
from left to right in the inner loop. The resulting algorithm runs in O(n3) time.

2

CS/ECE 374 Homework 6 (due March 8) Spring 2017

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for j← i + 1 to n

if A[i]∼ A[j]
LBS[i, j]← LBS[i + 1, j − 1] + 2

else
LBS[i, j]← 0

for k← i to j − 1
LBS[i, j]←max

�

LBS[i, j], LBS[i, k] + LBS[k+ 1, j]
	

return LBS[1, n]

�

Rubric: 10 points, standard dynamic programming rubric

5. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun+
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max{MaxFunYes(w), MaxFunNo(w)}

(These recurrences do not require separate base cases, because
∑

∅= 0.) We can memoize
these functions by adding two additional fields v.yes and v.no to each node v in the tree.
The values at each node depend only on the vales at its children, so we can compute all 2n
values using a postorder traversal of T .

3

CS/ECE 374 Homework 6 (due March 8) Spring 2017

BestParty(T):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes+w.no
v.no← v.no+max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!¹) The algorithm spends O(1) time at each
node, and therefore runs in O(n) time altogether. �

¹A naïve recursive implementation would run in O(φn) time in the worst case, where φ = (1+
p

5)/2≈ 1.618 is
the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.

4

CS/ECE 374 Homework 6 (due March 8) Spring 2017

Solution (one function): For each node v in the input tree T , let MaxFun(v) denote the
maximum total “fun” of a legal party among the descendants of v, where v may or may
not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun+
∑

grandchildren w of root

MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) =max

v.fun+
∑

grandchildren x of v

MaxFun(x)

∑

children w of v

MaxFun(w)

(This recurrence does not require a separate base case, because
∑

∅= 0.) We can memoize
this function by adding an additional field v.maxFun to each node v in the tree. The value
at each node depends only on the values at its children and grandchildren, so we can
compute all values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party+ x .maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no+w.maxFun
for all children x of w

yes← yes+ x .maxFun
v.maxFun←max{yes, no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!²)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. �

Rubric: 10 points: standard dynamic programming rubric. These are not the only
correct solutions.

²Like the previous solution, a direct recursive implementation would run in O(φn) time in the worst case, where
φ = (1+

p
5)/2≈ 1.618 is the golden ratio.

5

