CS 374 Lab 8: Turing Machines

Date: February 12, 2016.

Problem 1. [Category: Comprehension] Consider the following Turing machine M over the input alphabet $\Sigma=\{a\}$. The reject state q_{rej} is not shown, and all "missing" transitions are assumed to go to q_{rej} as per

our convention.

1. Describe the computation of M on input aaaa (4a's) as a sequence of configurations.
2. What language does M recognize? Outline an informal justification for your answer. Hint: Recall that, $1+3+5+\cdots+(2 k-1)=k^{2}$.

Problem 2. [Category: Design] Design a TM to recognize the language $\left\{a^{i} b^{j} c^{k} \mid k=i * j\right\}$.
Problem 3. [Category: Design] Shifting symbols: Design a TM M_{k} such that given input $w \in \Sigma^{*}, M$ halts with the tape containing $\square^{k} w$.

