Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

Backtracking and Memoization

Lecture 12 Tuesday, October 4, 2022

LATEXed: October 13, 2022 14:17

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

12.1

On different techniques for recursive algorithms

Recursion

Reduction:

Reduce one problem to another

Recursion

A special case of reduction

- 1. reduce problem to a smaller instance of itself
- 2. self-reduction
- 1. Problem instance of size \mathbf{n} is reduced to one or more instances of size $\mathbf{n} \mathbf{1}$ or less.
- 2. For termination, problem instances of small size are solved by some other method as **base cases**.

Recursion in Algorithm Design

- 1. <u>Tail Recursion</u>: problem reduced to a <u>single</u> recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc.
- 2. <u>Divide and Conquer</u>: Problem reduced to multiple <u>independent</u> sub-problems that are solved separately. Conquer step puts together solution for bigger problem. Examples: Closest pair, deterministic median selection, quick sort.
- 3. **Backtracking**: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.
- 4. <u>Dynamic Programming</u>: problem reduced to multiple (typically) <u>dependent or overlapping</u> sub-problems. Use <u>memoization</u> to avoid recomputation of common solutions leading to iterative bottom-up algorithm.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

12.2

Search trees and backtracking

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?

The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general **n**?

The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general **n**?

Strategy: Search tree

Search tree for 5 queens

Backtracking: Informal definition

Recursive search over an implicit tree, where we "backtrack" if certain possibilities do not work.

n queens C++ code

```
void generate_permutations( int * permut, int row, int n )
  if (row == n) {
    print board( permut, n );
    return:
  for (int val = 1; val \leq n; val ++)
    if (isValid(permut, row, val)) {
       permut[ row ] = val;
       generate permutations (permut, row + 1, n);
generate permutations(permut, 0, 8);
```

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

12.3

Brute Force Search, Recursion and Backtracking

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

12.3.1

Naive algorithm for Max Independent Set in a Graph

Maximum Independent Set in a Graph

Definition 12.1.

Given undirected graph G = (V, E) a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \not\in E$.

Some independent sets in graph above: $\{D\}, \{A, C\}, \{B, E, F\}$

Maximum Independent Set Problem

Input Graph G = (V, E)

Goal Find maximum sized independent set in G

Maximum Weight Independent Set Problem

Input Graph G = (V, E), weights $w(v) \ge 0$ for $v \in V$ Goal Find maximum weight independent set in G

Maximum Weight Independent Set Problem

- 1. No one knows an efficient (polynomial time) algorithm for this problem
- 2. Problem is **NP-Complete** and it is <u>believed</u> that there is no polynomial time algorithm

Brute-force algorithm:

Try all subsets of vertices.

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

```
MaxIndSet(G = (V, E)):
    max = 0
    for each subset S ⊆ V do
        check if S is an independent set
        if S is an independent set and w(S) > max then
            max = w(S)

Output max
```

Running time: suppose **G** has **n** vertices and **m** edges

- 1. 2ⁿ subsets of V
- 2. checking each subset **S** takes **O(m)** time
- 3. total time is $O(m2^n)$

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

```
MaxIndSet(G = (V, E)):
    max = 0
    for each subset S ⊆ V do
        check if S is an independent set
    if S is an independent set and w(S) > max then
        max = w(S)
Output max
```

Running time: suppose G has n vertices and m edges

- 1. 2ⁿ subsets of V
- 2. checking each subset S takes O(m) time
- 3. total time is O(m2ⁿ)

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

12.3.2

A recursive algorithm for Max Independent Set in a Graph

A Recursive Algorithm

```
Let V = \{v_1, v_2, \dots, v_n\}.
```

For a vertex \mathbf{u} let $\mathbf{N}(\mathbf{u})$ be its neighbors.

Observation 1

 v_1 : vertex in the graph.

One of the following two cases is true

Case 1 v_1 is in some maximum independent set.

Case 2 $\mathbf{v_1}$ is in no maximum independent set.

We can try both cases to "reduce" the size of the problem

A Recursive Algorithm

```
Let V = \{v_1, v_2, \dots, v_n\}.
For a vertex \mathbf{u} let \mathbf{N}(\mathbf{u}) be its neighbors.
```

Observation 12.2.

 $\mathbf{v_1}$: vertex in the graph.

One of the following two cases is true

Case 1 $\mathbf{v_1}$ is in some maximum independent set.

Case 2 $\mathbf{v_1}$ is in <u>no</u> maximum independent set.

We can try both cases to "reduce" the size of the problem

Removing a vertex (say 5)

Because it is NOT in the independent set

Removing a vertex (say 5)

Because it is NOT in the independent set

Removing a vertex (say 5) and its neighbors

Because it is in the independent set

Removing a vertex (say 5) and its neighbors

Because it is in the independent set

A Recursive Algorithm: The two possibilities

 $\mathbf{G}_1 = \mathbf{G} - \mathbf{v}_1$ obtained by removing \mathbf{v}_1 and incident edges from \mathbf{G} $\mathbf{G}_2 = \mathbf{G} - \mathbf{v}_1 - \mathbf{N}(\mathbf{v}_1)$ obtained by removing $\mathbf{N}(\mathbf{v}_1) \cup \mathbf{v}_1$ from \mathbf{G}

$$\mathsf{MIS}(\mathsf{G}) = \mathsf{max}\{\mathsf{MIS}(\mathsf{G}_1), \mathsf{MIS}(\mathsf{G}_2) + \mathsf{w}(\mathsf{v}_1)\}$$

A Recursive Algorithm

```
\label{eq:RecursiveMIS} \begin{split} &\text{RecursiveMIS}(G): \\ &\text{if } G \text{ is empty then Output } 0 \\ &a = \frac{\text{RecursiveMIS}(G - v_1)}{b = w(v_1) + \frac{\text{RecursiveMIS}(G - v_1 - N(v_n))}{\text{Output } \max(a,b)} \end{split}
```

Example

Recursive Algorithms

..for Maximum Independent Set

Running time:

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\mathsf{n}-1) + \mathsf{T}\Big(\mathsf{n}-1 - \mathsf{deg}(\mathsf{v}_1)\Big) + O(1 + \mathsf{deg}(\mathsf{v}_1))$$

where $deg(v_1)$ is the degree of v_1 . T(0) = T(1) = 1 is base case.

Worst case is when $deg(v_1) = 0$ when the recurrence becomes

$$\mathsf{T}(\mathsf{n}) = 2\mathsf{T}(\mathsf{n}-1) + \mathsf{O}(1)$$

Solution to this is $T(n) = O(2^n)$.

Backtrack Search via Recursion

- 1. Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem)
- 2. Simple recursive algorithm computes/explores the whole tree blindly in some order.
- 3. Backtrack search is a way to explore the tree intelligently to prune the search space
 - 3.1 Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method
 - 3.2 Memoization to avoid recomputing same problem
 - 3.3 Stop the recursion at a subproblem if it is clear that there is no need to explore further.
 - 3.4 Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

12.4

Longest Increasing Subsequence

Sequences

Definition 12.1.

<u>Sequence</u>: an ordered list a_1, a_2, \ldots, a_n . <u>Length</u> of a sequence is number of elements in the list.

Definition 12.2.

 a_{i_1}, \ldots, a_{i_k} is a <u>subsequence</u> of a_1, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

Definition 12.3.

A sequence is <u>increasing</u> if $a_1 < a_2 < \ldots < a_n$. It is <u>non-decreasing</u> if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly <u>decreasing</u> and <u>non-increasing</u>.

Sequences

Example...

Example 12.4.

- 1. Sequence: **6**, **3**, **5**, **2**, **7**, **8**, **1**, **9**
- 2. Subsequence of above sequence: **5**, **2**, **1**
- 3. Increasing sequence: **3**, **5**, **9**, **17**, **54**
- 4. Decreasing sequence: **34**, **21**, **7**, **5**, **1**
- 5. Increasing subsequence of the first sequence: **2**, **7**, **9**.

Longest Increasing Subsequence Problem

```
Input A sequence of numbers a_1, a_2, \ldots, a_n
Goal Find an increasing subsequence a_{i_1}, a_{i_2}, \ldots, a_{i_k} of maximum length
```

Example 12.5

- 1. Sequence: 6, 3, 5, 2, 7, 8, 1
- 2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- 3. Longest increasing subsequence: 3, 5, 7, 8

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n Goal Find an **increasing subsequence** $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example 12.5.

- 1. Sequence: 6, 3, 5, 2, 7, 8, 1
- 2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- 3. Longest increasing subsequence: 3, 5, 7, 8

Naïve Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array **A**

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B of A do
        if B is increasing and |B| > max then
            max = |B|
        Output max
```

Running time: O(n2ⁿ)

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

Naïve Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array **A**

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B of A do
        if B is increasing and |B| > max then
            max = |B|
        Output max
```

Running time: $O(n2^n)$.

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

Naïve Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array **A**

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B of A do
        if B is increasing and |B| > max then
            max = |B|
        Output max
```

Running time: $O(n2^n)$.

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A[1..n]**):

- 1. Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- 2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is $LIS_smaller(A[1..n], x)$ which gives the longest increasing subsequence in A where each number in the sequence is less than x.

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A[1..n]**):

- 1. Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- 2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A[1..n]**):

- 1. Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- 2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A[1..n]**):

- 1. Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- 2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 12.6.

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Recursive Approach

LIS_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

```
\begin{split} & \text{LIS\_smaller}(A[1..n],x): \\ & \text{if } (n=0) \text{ then return } 0 \\ & m = \text{LIS\_smaller}(A[1..(n-1)],x) \\ & \text{if } (A[n] < x) \text{ then} \\ & m = \text{max}(m,1 + \text{LIS\_smaller}(A[1..(n-1)],A[n])) \\ & \text{Output } m \end{split}
```

```
 \begin{array}{c} \textbf{LIS}(\textbf{A[1..n]}): \\ \textbf{return LIS\_smaller}(\textbf{A[1..n]}, \infty) \end{array}
```

Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

12.4.1

Running time analysis

```
\begin{split} & \text{LIS\_smaller}(A[1..n],x): \\ & \text{if } (n=0) \text{ then return 0} \\ & m = \text{LIS\_smaller}(A[1..(n-1)],x) \\ & \text{if } (A[n] < x) \text{ then} \\ & m = \text{max}(m,1 + \text{LIS\_smaller}(A[1..(n-1)],A[n])) \\ & \text{Output } m \end{split}
```

```
 \begin{array}{c} \textbf{LIS}(\textbf{A[1..n]}): \\ \textbf{return LIS\_smaller}(\textbf{A[1..n]}, \infty) \end{array}
```

Lemma 12.7.

LIS_smaller runs in O(2ⁿ) time.

Improvement: From $O(n2^n)$ to $O(2^n)$one can do much better using memoization

Lemma 12.7.

LIS_smaller runs in $O(2^n)$ time.

Improvement: From $O(n2^n)$ to $O(2^n)$.

....one can do much better using memoization!

Lemma 12.7.

LIS_smaller runs in O(2ⁿ) time.

Improvement: From $O(n2^n)$ to $O(2^n)$.

....one can do much better using memoization!