Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

# Divide & conquer: Kartsuba's Algorithm and Linear Time Selection

Lecture 11 Thursday, September 29, 2022

LATEXed: October 13, 2022 14:18

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

# 11.1

# Problem statement: Multiplying numbers + a slow algorithm

# The Problem: Multiplying numbers

Given two large positive integer numbers **b** and **c**, with **n** digits, compute the number  $\mathbf{b} * \mathbf{c}$ .

| 76   | 35                   |      |
|------|----------------------|------|
| 76   | <b>34</b> + <b>1</b> | 76   |
| 76   | 34                   |      |
| 152  | 17                   |      |
| 152  | <b>16 + 1</b>        | 152  |
| 152  | 16                   |      |
| 304  | 8                    |      |
| 608  | 4                    |      |
| 1216 | 2                    |      |
| 2432 | 1                    | 2432 |
|      |                      | 2660 |

| 76   | 35     |      |
|------|--------|------|
| 76   | 34 + 1 | 76   |
| 76   | 34     |      |
| 152  | 17     |      |
| 152  | 16 + 1 | 152  |
| 152  | 16     |      |
| 304  | 8      |      |
| 608  | 4      |      |
| 1216 | 2      |      |
| 2432 | 1      | 2432 |
|      |        | 2660 |

| 76<br>76<br>76 | 35<br>34 + 1<br>34 | 76   |
|----------------|--------------------|------|
| 152            | 17                 |      |
| 152            | 16 + 1             | 150  |
| 192            | 10 + 1             | 132  |
| 152            | 16                 |      |
| 304            | 8                  |      |
| 608            | 4                  |      |
| 1216           | 2                  |      |
| 2432           | 1                  | 2432 |
|                |                    | 2660 |

| 76<br>76   | 35<br>34 + 1 | 76   |
|------------|--------------|------|
| 76<br>152  | 34<br>17     |      |
| 152<br>152 | 16 + 1       | 152  |
| 152        | 16           |      |
| 304        | 8            |      |
| 608        | 4            |      |
| 1216       | 2            |      |
| 2432       | 1            | 2432 |
|            |              | 2660 |

| 76   | 35     |      |
|------|--------|------|
| 76   | 34 + 1 | 76   |
| 76   | 34     |      |
| 152  | 17     |      |
| 152  | 16 + 1 | 152  |
| 152  | 16     |      |
| 304  | 8      |      |
| 608  | 4      |      |
| 1216 | 2      |      |
| 2432 | 1      | 2432 |
|      |        | 2660 |

| 76        | 35     |      |
|-----------|--------|------|
| <b>76</b> | 34 + 1 | 76   |
| <b>76</b> | 34     |      |
| 152       | 17     |      |
| 152       | 16 + 1 | 152  |
| 152       | 16     |      |
| 304       | 8      |      |
| 608       | 4      |      |
| 1216      | 2      |      |
| 2432      | 1      | 2432 |
|           |        | 2660 |

| 76   | 35     |      |
|------|--------|------|
| 76   | 34 + 1 | 76   |
| 76   | 34     |      |
| 152  | 17     |      |
| 152  | 16 + 1 | 152  |
| 152  | 16     |      |
| 304  | 8      |      |
| 608  | 4      |      |
| 1216 | 2      |      |
| 2432 | 1      | 2432 |
|      |        | 2660 |

| 76         | 35     |      |
|------------|--------|------|
| 76         | 34 + 1 | 76   |
| <b>76</b>  | 34     |      |
| 152        | 17     |      |
| 152        | 16 + 1 | 152  |
| 152        | 16     |      |
| 304        | 8      |      |
| <b>608</b> | 4      |      |
| 1216       | 2      |      |
| 2432       | 1      | 2432 |
|            |        | 2660 |

| 76         | 35     |      |
|------------|--------|------|
| 76         | 34 + 1 | 76   |
| 76         | 34     |      |
| 152        | 17     |      |
| 152        | 16 + 1 | 152  |
| 152        | 16     |      |
| 304        | 8      |      |
| <b>608</b> | 4      |      |
| 1216       | 2      |      |
| 2432       | 1      | 2432 |
|            |        | 2660 |

| 76         | 35     |      |
|------------|--------|------|
| 76         | 34 + 1 | 76   |
| <b>76</b>  | 34     |      |
| 152        | 17     |      |
| 152        | 16 + 1 | 152  |
| 152        | 16     |      |
| <b>304</b> | 8      |      |
| <b>608</b> | 4      |      |
| 1216       | 2      |      |
| 2432       | 1      | 2432 |
|            |        | 2660 |

| <b>76</b>   <b>34</b> + 1   <b>76</b> |  |
|---------------------------------------|--|
|                                       |  |
| 76 34                                 |  |
| 152 17                                |  |
| 152 $  16 + 1   152$                  |  |
| 152 16                                |  |
| 304 8                                 |  |
| 608 4                                 |  |
| 1216 2                                |  |
| 2432 1 2432                           |  |
| 2660                                  |  |

# The problem: Multiplying Numbers

Problem Given two  $\mathbf{n}$ -digit numbers  $\mathbf{x}$  and  $\mathbf{y}$ , compute their product.

#### Grade School Multiplication

Compute "partial product" by multiplying each digit of **y** with **x** and adding the partial products.

 $3141 \\ \times 2718 \\ 25128 \\ 3141 \\ 21987 \\ \underline{6282} \\ 8537238 \\ \end{array}$ 

# Time Analysis of Grade School Multiplication

- 1. Each partial product:  $\Theta(n)$
- 2. Number of partial products:  $\Theta(n)$
- 3. Addition of partial products:  $\Theta(n^2)$
- 4. Total time:  $\Theta(n^2)$

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

# **11.2** Multiplication using Divide and Conquer

# **Divide and Conquer**

Assume **n** is a power of **2** for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

1.  $\mathbf{b} = \mathbf{b}_{n-1}\mathbf{b}_{n-2}\dots\mathbf{b}_0$  and  $\mathbf{c} = \mathbf{c}_{n-1}\mathbf{c}_{n-2}\dots\mathbf{c}_0$ 2.  $\mathbf{b} = \mathbf{b}_{n-1}\dots\mathbf{b}_{n/2}\mathbf{0}\dots\mathbf{0} + \mathbf{b}_{n/2-1}\dots\mathbf{b}_0$ 3.  $\mathbf{b}(\mathbf{x}) = \mathbf{b}_L\mathbf{x} + \mathbf{b}_R$ , where  $\mathbf{x} = \mathbf{10}^{n/2}$ ,  $\mathbf{b}_L = \mathbf{b}_{n-1}\dots\mathbf{b}_{n/2}$  and  $\mathbf{b}_R = \mathbf{b}_{n/2-1}\dots\mathbf{b}_0$ 4. Similarly  $\mathbf{c}(\mathbf{x}) = \mathbf{c}_L\mathbf{x} + \mathbf{c}_R$  where  $\mathbf{c}_L = \mathbf{c}_{n-1}\dots\mathbf{c}_{n/2}$  and  $\mathbf{c}_R = \mathbf{c}_{n/2-1}\dots\mathbf{c}_0$  Example

 $1234 \times 5678 = (12x + 34) \times (56x + 78) \qquad \text{for} \quad x = 100.$ = 12 \cdot 56 \cdot x<sup>2</sup> + (12 \cdot 78 + 34 \cdot 56)x + 34 \cdot 78.

> $1234 \times 5678 = (100 \times 12 + 34) \times (100 \times 56 + 78)$ = 10000 × 12 × 56 +100 × (12 × 78 + 34 × 56) +34 × 78

# Divide and Conquer for multiplication

Assume **n** is a power of **2** for simplicity and numbers are in decimal.

1. 
$$\mathbf{b} = \mathbf{b}_{n-1}\mathbf{b}_{n-2}\dots\mathbf{b}_0$$
 and  $\mathbf{c} = \mathbf{c}_{n-1}\mathbf{c}_{n-2}\dots\mathbf{c}_0$   
2.  $\mathbf{b} \equiv \mathbf{b}(\mathbf{x}) = \mathbf{b}_L \mathbf{x} + \mathbf{b}_R$   
where  $\mathbf{x} = \mathbf{10}^{n/2}$ ,  $\mathbf{b}_L = \mathbf{b}_{n-1}\dots\mathbf{b}_{n/2}$  and  $\mathbf{b}_R = \mathbf{b}_{n/2-1}\dots\mathbf{b}_0$   
3.  $\mathbf{c} \equiv \mathbf{c}(\mathbf{x}) = \mathbf{c}_L \mathbf{x} + \mathbf{c}_R$  where  $\mathbf{c}_L = \mathbf{c}_{n-1}\dots\mathbf{c}_{n/2}$  and  $\mathbf{c}_R = \mathbf{c}_{n/2-1}\dots\mathbf{c}_0$   
herefore, for  $\mathbf{x} = \mathbf{10}^{n/2}$ , we have

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$
  
=  $b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$   
=  $10^n b_L c_L + 10^{n/2} (b_L c_R + b_R c_L) + b_R c_R$ 

# Divide and Conquer for multiplication

Assume **n** is a power of **2** for simplicity and numbers are in decimal.

1. 
$$\mathbf{b} = \mathbf{b}_{n-1}\mathbf{b}_{n-2}\dots\mathbf{b}_0$$
 and  $\mathbf{c} = \mathbf{c}_{n-1}\mathbf{c}_{n-2}\dots\mathbf{c}_0$   
2.  $\mathbf{b} \equiv \mathbf{b}(\mathbf{x}) = \mathbf{b}_L \mathbf{x} + \mathbf{b}_R$   
where  $\mathbf{x} = \mathbf{10}^{n/2}$ ,  $\mathbf{b}_L = \mathbf{b}_{n-1}\dots\mathbf{b}_{n/2}$  and  $\mathbf{b}_R = \mathbf{b}_{n/2-1}\dots\mathbf{b}_0$   
3.  $\mathbf{c} \equiv \mathbf{c}(\mathbf{x}) = \mathbf{c}_L \mathbf{x} + \mathbf{c}_R$  where  $\mathbf{c}_L = \mathbf{c}_{n-1}\dots\mathbf{c}_{n/2}$  and  $\mathbf{c}_R = \mathbf{c}_{n/2-1}\dots\mathbf{c}_0$   
Therefore, for  $\mathbf{x} = \mathbf{10}^{n/2}$ , we have

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$
  
=  $b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$   
=  $10^n b_L c_L + 10^{n/2} (b_L c_R + b_R c_L) + b_R c_R$ 

## Time Analysis

#### $bc = 10^{n}b_{L}c_{L} + 10^{n/2}(b_{L}c_{R} + b_{R}c_{L}) + b_{R}c_{R}$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

 $T(n) = \Theta(n^2)$ . No better than grade school multiplication!

## Time Analysis

#### $bc = 10^{n}b_{L}c_{L} + 10^{n/2}(b_{L}c_{R} + b_{R}c_{L}) + b_{R}c_{R}$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

 $T(n) = \Theta(n^2)$ . No better than grade school multiplication!

## Time Analysis

#### $bc = 10^{n}b_{L}c_{L} + 10^{n/2}(b_{L}c_{R} + b_{R}c_{L}) + b_{R}c_{R}$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

#### T(n) = 4T(n/2) + O(n) T(1) = O(1)

 $T(n) = \Theta(n^2)$ . No better than grade school multiplication!

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

# 11.3

# Faster multiplication: Karatsuba's Algorithm

# A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a + bi)(c + di) = ac - bd + (ad + bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

# A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a + bi)(c + di) = ac - bd + (ad + bc)i$$

#### How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

# A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a + bi)(c + di) = ac - bd + (ad + bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd Gauss technique for polynomials p(x) = ax + b and q(x) = cx + d.

 $p(x)q(x) = acx^2 + (ad + bc)x + bd.$ 

 $p(x)q(x) = acx^2 + ((a + b)(c + d) - ac - bd)x + bd.$ 

Gauss technique for polynomials

p(x) = ax + b and q(x) = cx + d.

 $p(x)q(x) = acx^2 + (ad + bc)x + bd.$ 

 $p(x)q(x) = acx^2 + ((a + b)(c + d) - ac - bd)x + bd.$ 

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$
  
=  $b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$ 

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$
  
=  $b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$   
=  $(b_L * c_L)x^2 + ((b_L + b_R) * (c_L + c_R) - b_L * c_L - b_R * c_R)x + b_R * c_R$ 

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$
  
=  $b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$   
=  $(b_L * c_L)x^2 + ((b_L + b_R) * (c_L + c_R) - b_L * c_L - b_R * c_R)x + b_R * c_R$ 

Recursively compute only  $\mathbf{b}_{L}\mathbf{c}_{L}$ ,  $\mathbf{b}_{R}\mathbf{c}_{R}$ ,  $(\mathbf{b}_{L} + \mathbf{b}_{R})(\mathbf{c}_{L} + \mathbf{c}_{R})$ .

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$
  
=  $b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$   
=  $(b_L * c_L)x^2 + ((b_L + b_R) * (c_L + c_R) - b_L * c_L - b_R * c_R)x + b_R * c_R$ 

Recursively compute only  $\mathbf{b}_{L}\mathbf{c}_{L}$ ,  $\mathbf{b}_{R}\mathbf{c}_{R}$ ,  $(\mathbf{b}_{L} + \mathbf{b}_{R})(\mathbf{c}_{L} + \mathbf{c}_{R})$ .

Time Analysis

Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means  $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$ 

# State of the Art

Schönhage-Strassen 1971: **O(n log n log log n)** time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: **O(n log n2**<sup>O(log\* n)</sup>) time

Conjecture

There is an  $O(n \log n)$  time algorithm.
Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

## **11.3.1** Solving the recurrences for fast multiplication

#### Analyzing the Recurrences

- 1. Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim:  $T(n) = \Theta(n^2)$ .
- 2. Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim:  $T(n) = \Theta(n^{1+\log 1.5})$

Use recursion tree method:

- 1. In both cases, depth of recursion  $L = \log n$ .
- 2. Work at depth i is  $4^i n/2^i$  and  $3^i n/2^i$  respectively: number of children at depth i times the work at each child
- 3. Total work is therefore  $n \sum_{i=0}^{L} 2^{i}$  and  $n \sum_{i=0}^{L} (3/2)^{i}$  respectively.

#### Analyzing the Recurrences

- 1. Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim:  $T(n) = \Theta(n^2)$ .
- 2. Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim:  $T(n) = \Theta(n^{1+\log 1.5})$

Use recursion tree method:

- 1. In both cases, depth of recursion  $\mathbf{L} = \log \mathbf{n}$ .
- 2. Work at depth i is  $4^i n/2^i$  and  $3^i n/2^i$  respectively: number of children at depth i times the work at each child
- 3. Total work is therefore  $n \sum_{i=0}^{L} 2^{i}$  and  $n \sum_{i=0}^{L} (3/2)^{i}$  respectively.

Analyzing the recurrence with four recursive calls T(n) = 4T(n/2) + O(n), T(1) = 1 Analyzing the recurrence with three recursive calls T(n) = 3T(n/2) + O(n), T(1) = 1 Analyzing the recurrence with two recursive calls T(n) = 2T(n/2) + O(n), T(1) = 1 Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

# **11.4** Selecting in Unsorted Lists

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

## **11.4.1** Problem definition and basic algorithm

#### Rank of element in an array

A: an unsorted array of **n** integers

#### Definition 11.1.

For  $1 \leq j \leq n$ , element of rank j is the jth smallest element in A.

| Unsorted array | 16 | 14 | 34 | 20 | 12 | 5  | 3  | 19 | 11 |
|----------------|----|----|----|----|----|----|----|----|----|
| Ranks          | 6  | 5  | 9  | 8  | 4  | 2  | 1  | 7  | 3  |
|                |    |    |    |    |    |    |    |    |    |
| Sort of array  | 3  | 5  | 11 | 12 | 14 | 16 | 19 | 20 | 34 |

#### **Problem - Selection**

Input Unsorted array **A** of **n** integers **and** integer **j** Goal Find the **j**th smallest number in **A** (<u>rank **j**</u> number)

Median:  $\mathbf{j} = \lfloor (\mathbf{n} + 1)/2 \rfloor$ 

Simplifying assumption for sake of notation: elements of A are distinct

#### **Problem - Selection**

Input Unsorted array **A** of **n** integers **and** integer **j** Goal Find the **j**th smallest number in **A** (rank **j** number)

Median:  $\mathbf{j} = \lfloor (\mathbf{n} + 1)/2 \rfloor$ 

Simplifying assumption for sake of notation: elements of A are distinct

#### Algorithm I

- 1. Sort the elements in  $\boldsymbol{\mathsf{A}}$
- 2. Pick jth element in sorted order Time taken =  $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

#### Algorithm I

- 1. Sort the elements in  $\boldsymbol{\mathsf{A}}$
- 2. Pick  $\mathbf{j}$ th element in sorted order
- Time taken =  $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

#### Algorithm II

- If  $\mathbf{j}$  is small or  $\mathbf{n} \mathbf{j}$  is small then
  - 1. Find **j** smallest/largest elements in **A** in **O(jn)** time. (How?)
  - 2. Time to find median is  $O(n^2)$ .

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

## **11.4.2** Quick select

#### QuickSelect

Divide and Conquer Approach

- 1. Pick a pivot element  $\mathbf{a}$  from  $\mathbf{A}$
- 2. Partition **A** based on **a**.

 $\textbf{A}_{\text{less}} = \{\textbf{x} \in \textbf{A} \mid \textbf{x} \leq a\} \text{ and } \textbf{A}_{\text{greater}} = \{\textbf{x} \in \textbf{A} \mid \textbf{x} > a\}$ 

- 3.  $|\mathbf{A}_{\text{less}}| = \mathbf{j}$ : return a
- 4.  $|\mathbf{A}_{\text{less}}| > j$ : recursively find jth smallest element in  $\mathbf{A}_{\text{less}}$
- 5.  $|\mathbf{A}_{\text{less}}| < \mathbf{j}$ : recursively find kth smallest element in  $\mathbf{A}_{\text{greater}}$  where  $\mathbf{k} = \mathbf{j} |\mathbf{A}_{\text{less}}|$ .

#### Example

34 20 

#### Time Analysis

1. Partitioning step: **O(n)** time to scan **A** 

2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and  $\mathbf{j} = \mathbf{n}$ . Exercise: show that algorithm takes  $\Omega(\mathbf{n}^2)$  time

#### **Time Analysis**

1. Partitioning step: **O(n)** time to scan **A** 

2. How do we choose pivot? Recursive running time? Suppose we always choose pivot to be **A[1]**.

Say A is sorted in increasing order and  $\mathbf{j} = \mathbf{n}$ . Exercise: show that algorithm takes  $\Omega(\mathbf{n}^2)$  time

#### **Time Analysis**

1. Partitioning step: **O(n)** time to scan **A** 

2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n. Exercise: show that algorithm takes  $\Omega(n^2)$  time

Suppose pivot is the  $\ell$ th smallest element where  $n/4 \leq \ell \leq 3n/4$ . That is pivot is approximately in the middle of A Then  $n/4 \leq |A_{\text{less}}| \leq 3n/4$  and  $n/4 \leq |A_{\text{greater}}| \leq 3n/4$ . If we apply recursion,

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$ 

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the  $\ell$ th smallest element where  $n/4 \leq \ell \leq 3n/4$ . That is pivot is approximately in the middle of A. Then  $n/4 \leq |A_{\text{less}}| \leq 3n/4$  and  $n/4 \leq |A_{\text{greater}}| \leq 3n/4$ . If we apply recursion,

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$ 

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the  $\ell$ th smallest element where  $n/4 \leq \ell \leq 3n/4$ . That is pivot is approximately in the middle of A. Then  $n/4 \leq |A_{\text{less}}| \leq 3n/4$  and  $n/4 \leq |A_{\text{greater}}| \leq 3n/4$ . If we apply recursion,

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$ 

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the  $\ell$ th smallest element where  $n/4 \leq \ell \leq 3n/4$ . That is pivot is approximately in the middle of A. Then  $n/4 \leq |A_{\text{less}}| \leq 3n/4$  and  $n/4 \leq |A_{\text{greater}}| \leq 3n/4$ . If we apply recursion,

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$ 

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the  $\ell$ th smallest element where  $n/4 \leq \ell \leq 3n/4$ . That is pivot is approximately in the middle of A. Then  $n/4 \leq |A_{\text{less}}| \leq 3n/4$  and  $n/4 \leq |A_{\text{greater}}| \leq 3n/4$ . If we apply recursion,

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$ 

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the  $\ell$ th smallest element where  $n/4 \leq \ell \leq 3n/4$ . That is pivot is approximately in the middle of A. Then  $n/4 \leq |A_{\text{less}}| \leq 3n/4$  and  $n/4 \leq |A_{\text{greater}}| \leq 3n/4$ . If we apply recursion,

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$ 

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

## **11.4.3** Median of Medians

#### Divide and Conquer Approach

A game of medians

#### Idea

- 1. Break input A into many subarrays:  $\textbf{L}_1, \ldots, \textbf{L}_k.$
- 2. Find median  $m_i$  in each subarray  $L_i$ .
- 3. Find the median x of the medians  $m_1,\ldots,m_k.$
- 4. Intuition: The median **x** should be close to being a good median of all the numbers in **A**.
- 5. Use  $\mathbf{x}$  as pivot in previous algorithm.

#### The input:

|     |    | •  |     |     |     |    |     |     |    |    |    |    |     |    |     |     |     |    |     |
|-----|----|----|-----|-----|-----|----|-----|-----|----|----|----|----|-----|----|-----|-----|-----|----|-----|
| 75  | 31 | 13 | 26  | 83  | 110 | 60 | 120 | 63  | 30 | 3  | 41 | 44 | 107 | 30 | 23  | 91  | 17  | 6  | 110 |
| 68  | 24 | 41 | 26  | 58  | 57  | 61 | 20  | 52  | 45 | 13 | 79 | 86 | 91  | 55 | 66  | 13  | 103 | 36 | 60  |
| 19  | 40 | 45 | 111 | 56  | 74  | 17 | 95  | 96  | 77 | 29 | 65 | 36 | 96  | 93 | 119 | 9   | 61  | 3  | 9   |
| 100 | 3  | 88 | 47  | 115 | 107 | 79 | 39  | 109 | 20 | 59 | 25 | 92 | 81  | 36 | 10  | 30  | 113 | 73 | 116 |
| 72  | 58 | 24 | 16  | 12  | 69  | 40 | 24  | 19  | 92 | 7  | 65 | 75 | 41  | 43 | 117 | 103 | 38  | 8  | 20  |

Compute median of the medians (recursive call):

 72
 74
 13
 66

 31
 60
 65
 30

 41
 20
 75
 61

 41
 53
 75
 61

 26
 63
 91
 8

After partition (pivot **60**):

Tail recursive call: Select element of rank 50 out of 56 elements.

#### The input:

|     |                             | •                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-----------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75  | 31                          | 13                                                                                                            | 26                                                                                                                                                                   | 83                                                                                                                                                                                                                           | 110                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                  | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 68  | 24                          | 41                                                                                                            | 26                                                                                                                                                                   | 58                                                                                                                                                                                                                           | 57                                                                                                                                                                                                                                                                                   | 61                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                   | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19  | 40                          | 45                                                                                                            | 111                                                                                                                                                                  | 56                                                                                                                                                                                                                           | 74                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                            | 95                                                                                                                                                                                                                                                                                                                                                                                                   | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100 | 3                           | 88                                                                                                            | 47                                                                                                                                                                   | 115                                                                                                                                                                                                                          | 107                                                                                                                                                                                                                                                                                  | 79                                                                                                                                                                                                                                                                                                                                            | 39                                                                                                                                                                                                                                                                                                                                                                                                   | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 72  | 58                          | 24                                                                                                            | 16                                                                                                                                                                   | 12                                                                                                                                                                                                                           | 69                                                                                                                                                                                                                                                                                   | 40                                                                                                                                                                                                                                                                                                                                            | 24                                                                                                                                                                                                                                                                                                                                                                                                   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 75<br>68<br>19<br>100<br>72 | 75         31           68         24           19         40           100         3           72         58 | 75         31         13           68         24         41           19         40         45           100         3         88           72         58         24 | 75         31         13         26           68         24         41         26           19         40         45         111           100         3         88         47           72         58         24         16 | 75         31         13         26         83           68         24         41         26         58           19         40         45         111         56           100         3         88         47         115           72         58         24         16         12 | 75         31         13         26         83         110           68         24         41         26         58         57           19         40         45         111         56         74           100         3         88         47         115         107           72         58         24         16         12         69 | 75         31         13         26         83         110         60           68         24         41         26         58         57         61           19         40         45         111         56         74         17           100         3         88         47         115         107         79           72         58         24         16         12         69         40 | 75         31         13         26         83         110         60         120           68         24         41         26         58         57         61         20           19         40         45         111         56         74         17         95           100         3         88         47         115         107         79         39           72         58         24         16         12         69         40         24 | 75         31         13         26         83         110         60         120         63           68         24         41         26         58         57         61         20         52           19         40         45         111         56         74         17         95         96           100         3         88         47         115         107         79         39         109           72         58         24         16         12         69         40         24         19 | 75         31         13         26         83         110         60         120         63         30           68         24         41         26         58         57         61         20         52         45           19         40         45         111         56         74         17         95         96         77           100         3         88         47         115         107         79         39         109         20           72         58         24         16         12         69         40         24         19         92 | 75         31         13         26         83         110         60         120         63         30         3           68         24         41         26         58         57         61         20         52         45         13           19         40         45         111         56         74         17         95         96         77         29           100         3         8         47         115         107         79         39         109         20         59           72         58         24         16         12         69         40         24         19         92         7 | 75         31         13         26         83         110         60         120         63         30         3         41           68         24         41         26         58         57         61         20         52         45         13         79           19         40         45         111         56         74         17         95         96         77         29         65           100         3         8         47         115         107         79         39         109         20         59         25           72         58         24         16         12         69         40         24         19         92         7         65 | 75         31         13         26         83         110         60         120         63         30         3         41         44           68         24         41         26         58         57         61         20         52         45         13         79         86           19         40         45         111         56         74         17         95         96         77         29         65         36           100         3         88         47         115         107         79         39         109         20         59         25         92           72         58         24         16         12         69         40         24         19         92         7         65         75 | 75         31         13         26         83         110         60         120         63         30         3         41         44         107           68         24         41         26         58         57         61         20         52         45         13         79         86         91           19         40         45         111         56         74         17         95         96         77         29         65         36         96           100         3         88         47         115         107         79         39         109         20         59         25         92         81           72         58         24         16         12         69         40         24         19         92         7         65         75         41 | 75         31         13         26         83         110         60         120         63         30         3         41         44         107         30           68         24         41         26         58         57         61         20         52         45         13         79         86         91         55           19         40         45         111         56         74         17         95         96         77         29         65         36         96         93           00         3         88         47         115         107         79         39         100         59         25         92         81         36           72         58         24         16         12         69         40         24         19         92         7         65         75         41         43 | 75         31         13         26         83         110         60         120         63         30         3         41         44         107         30         23           68         24         41         26         58         57         61         20         52         45         13         79         86         91         55         66           19         40         45         111         56         74         17         95         96         77         29         65         36         96         93         119           100         3         84         47         115         107         79         39         109         20         59         28         92         13         36         119           100         3         84         47         115         107         79         39         109         20         59         28         12         36         10           72         58         24         16         12         69         40         24         19         92         7         65         75         41         43         117 <th>75         31         13         26         83         110         60         120         63         30         3         41         44         107         30         23         91           68         24         41         26         58         57         61         20         52         45         13         79         86         91         55         66         13           19         40         45         111         56         74         17         95         96         77         29         65         36         96         93         119         9           100         3         88         47         115         107         79         39         109         59         25         92         81         61         10         30           72         58         24         16         12         69         40         24         19         92         7         65         75         41         43         117         103</th> <th>75         31         13         26         83         110         60         120         63         30         3         41         44         107         30         23         91         17           68         24         41         26         58         57         61         20         52         45         13         79         86         91         55         66         13         103           19         40         45         111         56         74         17         95         96         77         29         65         36         96         93         119         9         61           100         3         88         47         115         107         79         39         109         20         59         28         13         36         10         30         113           72         58         24         16         12         69         40         24         19         92         7         65         75         41         43         117         103         38</th> <th>75         31         13         26         83         110         60         120         63         30         3         41         44         107         30         23         91         17         6           68         24         41         26         58         57         61         20         52         45         13         79         86         91         55         66         13         103         36           19         40         45         111         56         74         17         95         96         77         29         65         36         96         93         119         9         61         3           100         3         84         47         115         107         79         90         20         59         28         126         10         30         113         73           72         58         24         16         12         69         40         24         19         92         7         65         75         41         43         117         103         38         8</th> | 75         31         13         26         83         110         60         120         63         30         3         41         44         107         30         23         91           68         24         41         26         58         57         61         20         52         45         13         79         86         91         55         66         13           19         40         45         111         56         74         17         95         96         77         29         65         36         96         93         119         9           100         3         88         47         115         107         79         39         109         59         25         92         81         61         10         30           72         58         24         16         12         69         40         24         19         92         7         65         75         41         43         117         103 | 75         31         13         26         83         110         60         120         63         30         3         41         44         107         30         23         91         17           68         24         41         26         58         57         61         20         52         45         13         79         86         91         55         66         13         103           19         40         45         111         56         74         17         95         96         77         29         65         36         96         93         119         9         61           100         3         88         47         115         107         79         39         109         20         59         28         13         36         10         30         113           72         58         24         16         12         69         40         24         19         92         7         65         75         41         43         117         103         38 | 75         31         13         26         83         110         60         120         63         30         3         41         44         107         30         23         91         17         6           68         24         41         26         58         57         61         20         52         45         13         79         86         91         55         66         13         103         36           19         40         45         111         56         74         17         95         96         77         29         65         36         96         93         119         9         61         3           100         3         84         47         115         107         79         90         20         59         28         126         10         30         113         73           72         58         24         16         12         69         40         24         19         92         7         65         75         41         43         117         103         38         8 |

Compute median of the medians (recursive call):

| 72 | 74 | 13 | 66 |
|----|----|----|----|
| 31 | 60 | 65 | 30 |
| 41 | 39 | 75 | 61 |
| 26 | 63 | 91 | 8  |
| 58 | 45 | 43 | 60 |

After partition (pivot **60**)

Tail recursive call: Select element of rank 50 out of 56 elements.

#### The input:

|     |    | •  |     |     |     |    |     |     |    |    |    |    |     |    |     |     |     |    |     |
|-----|----|----|-----|-----|-----|----|-----|-----|----|----|----|----|-----|----|-----|-----|-----|----|-----|
| 75  | 31 | 13 | 26  | 83  | 110 | 60 | 120 | 63  | 30 | 3  | 41 | 44 | 107 | 30 | 23  | 91  | 17  | 6  | 110 |
| 68  | 24 | 41 | 26  | 58  | 57  | 61 | 20  | 52  | 45 | 13 | 79 | 86 | 91  | 55 | 66  | 13  | 103 | 36 | 60  |
| 19  | 40 | 45 | 111 | 56  | 74  | 17 | 95  | 96  | 77 | 29 | 65 | 36 | 96  | 93 | 119 | 9   | 61  | 3  | 9   |
| 100 | 3  | 88 | 47  | 115 | 107 | 79 | 39  | 109 | 20 | 59 | 25 | 92 | 81  | 36 | 10  | 30  | 113 | 73 | 116 |
| 72  | 58 | 24 | 16  | 12  | 69  | 40 | 24  | 19  | 92 | 7  | 65 | 75 | 41  | 43 | 117 | 103 | 38  | 8  | 20  |

Compute median of the medians (recursive call):

| 72  | 74 | 13 | 66 |
|-----|----|----|----|
| 31  | 60 | 65 | 30 |
| 41  | 39 | 75 | 61 |
| 26  | 63 | 91 | 8  |
| E0. | 45 | 40 | 60 |

#### After partition (pivot 60):

| ſ | 19 | 3  | 13 | 16 | 12 | 57 | 17 | 20 | 19 | 20 | 3  | 25 | 92 | 109 | 96  | 79  | 110 | 69  | 83  | 75  |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| ſ | 41 | 24 | 24 | 26 | 56 | 17 | 40 | 24 | 52 | 30 | 7  | 60 | 77 | 81  | 63  | 61  | 107 | 115 | 111 | 72  |
| Γ | 20 | 31 | 41 | 26 | 58 | 30 | 60 | 39 | 36 | 45 | 13 | 65 | 75 | 91  | 120 | 66  | 74  | 61  | 88  | 68  |
| Γ | 9  | 40 | 45 | 47 | 3  | 13 | 23 | 55 | 30 | 44 | 29 | 65 | 86 | 96  | 95  | 117 | 91  | 103 | 100 | 110 |
| I | 36 | 58 | 8  | 6  | 38 | 9  | 10 | 43 | 41 | 36 | 59 | 79 | 92 | 107 | 93  | 119 | 103 | 113 | 73  | 116 |

Tail recursive call: Select element of rank 50 out of 56 elements.

 19
 3
 13
 16
 12
 57
 17
 20
 19
 20
 3
 25

 41
 24
 26
 56
 17
 40
 24
 52
 30
 7

 20
 31
 41
 26
 58
 30
 60
 39
 36
 45
 13

 9
 40
 45
 47
 31
 23
 55
 30
 44
 29

 36
 58
 8
 6
 38
 9
 10
 43
 41
 36
 59

#### The input:

|     |    | •  |     |     |     |    |     |     |    |    |    |    |     |    |     |     |     |    |     |
|-----|----|----|-----|-----|-----|----|-----|-----|----|----|----|----|-----|----|-----|-----|-----|----|-----|
| 75  | 31 | 13 | 26  | 83  | 110 | 60 | 120 | 63  | 30 | 3  | 41 | 44 | 107 | 30 | 23  | 91  | 17  | 6  | 110 |
| 68  | 24 | 41 | 26  | 58  | 57  | 61 | 20  | 52  | 45 | 13 | 79 | 86 | 91  | 55 | 66  | 13  | 103 | 36 | 60  |
| 19  | 40 | 45 | 111 | 56  | 74  | 17 | 95  | 96  | 77 | 29 | 65 | 36 | 96  | 93 | 119 | 9   | 61  | 3  | 9   |
| 100 | 3  | 88 | 47  | 115 | 107 | 79 | 39  | 109 | 20 | 59 | 25 | 92 | 81  | 36 | 10  | 30  | 113 | 73 | 116 |
| 72  | 58 | 24 | 16  | 12  | 69  | 40 | 24  | 19  | 92 | 7  | 65 | 75 | 41  | 43 | 117 | 103 | 38  | 8  | 20  |

Compute median of the medians (recursive call):

| 72 | 74 | 13 | 66 |
|----|----|----|----|
| 31 | 60 | 65 | 30 |
| 41 | 39 | 75 | 61 |
| 26 | 63 | 91 | 8  |
|    | _  | _  |    |

After partition (pivot **60**):

| · · |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| 19  | 3  | 13 | 16 | 12 | 57 | 17 | 20 | 19 | 20 | 3  | 25 | 92 | 109 | 96  | 79  | 110 | 69  | 83  | 75  |
| 41  | 24 | 24 | 26 | 56 | 17 | 40 | 24 | 52 | 30 | 7  | 60 | 77 | 81  | 63  | 61  | 107 | 115 | 111 | 72  |
| 20  | 31 | 41 | 26 | 58 | 30 | 60 | 39 | 36 | 45 | 13 | 65 | 75 | 91  | 120 | 66  | 74  | 61  | 88  | 68  |
| 9   | 40 | 45 | 47 | 3  | 13 | 23 | 55 | 30 | 44 | 29 | 65 | 86 | 96  | 95  | 117 | 91  | 103 | 100 | 110 |
| 36  | 58 | 8  | 6  | 38 | 9  | 10 | 43 | 41 | 36 | 59 | 79 | 92 | 107 | 93  | 119 | 103 | 113 | 73  | 116 |

#### Tail recursive call: Select element of rank 50 out of 56 elements.

| 19 | 3  | 13 | 16 | 12 | 57 | 17 | 20 | 19 | 20 | 3  | 25 |
|----|----|----|----|----|----|----|----|----|----|----|----|
| 41 | 24 | 24 | 26 | 56 | 17 | 40 | 24 | 52 | 30 | 7  |    |
| 20 | 31 | 41 | 26 | 58 | 30 | 60 | 39 | 36 | 45 | 13 |    |
| 9  | 40 | 45 | 47 | 3  | 13 | 23 | 55 | 30 | 44 | 29 |    |
| 36 | 58 | 8  | 6  | 38 | 9  | 10 | 43 | 41 | 36 | 59 |    |

#### Example

| 11 | 7 | 3 | 42 | 174 | 310 | 1 | 92 | 87 | 12 | 19 | 15 |
|----|---|---|----|-----|-----|---|----|----|----|----|----|
|----|---|---|----|-----|-----|---|----|----|----|----|----|



#### Example

| 11 | 7 | 3 | 42 | 174 | 310 | 1 | 92 | 87 | 12 | 19 | 15 |
|----|---|---|----|-----|-----|---|----|----|----|----|----|
|----|---|---|----|-----|-----|---|----|----|----|----|----|



#### Choosing the pivot

A clash of medians

- 1. Partition array **A** into  $\lceil n/5 \rceil$  lists of **5** items each.
  - $\mathsf{L}_1 = \{\mathsf{A}[1], \mathsf{A}[2], \dots, \mathsf{A}[5]\}, \, \mathsf{L}_2 = \{\mathsf{A}[6], \dots, \mathsf{A}[10]\}, \, \dots, \,$
  - $L_{i} = \{A[5i+1], \dots, A[5i-4]\}, \dots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil 4, \dots, A[n]\}.$
- 2. For each i find median  $b_i$  of  $\mathsf{L}_i$  using brute-force in  $\mathsf{O}(1)$  time. Total  $\mathsf{O}(n)$  time
- 3. Let  $B = \{b_1, b_2, \dots, b_{\lceil n/5\rceil}\}$
- 4. Find median **b** of **B**

#### .emma 11.2.

Median of **B** is an <u>approximate</u> median of **A**. That is, if **b** is used a pivot to partition **A**, then  $|\mathbf{A}_{less}| \leq 7n/10 + 6$  and  $|\mathbf{A}_{greater}| \leq 7n/10 + 6$ .

#### Choosing the pivot

A clash of medians

- 1. Partition array **A** into  $\lceil n/5 \rceil$  lists of **5** items each.
  - $L_1 = \{A[1], A[2], \dots, A[5]\}, L_2 = \{A[6], \dots, A[10]\}, \dots, A[10]\}$
  - $L_{i} = \{A[5i+1], \dots, A[5i-4]\}, \dots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil 4, \dots, A[n]\}.$
- 2. For each i find median  $b_i$  of  $\mathsf{L}_i$  using brute-force in  $\mathsf{O}(1)$  time. Total  $\mathsf{O}(n)$  time
- 3. Let  $B = \{b_1, b_2, \dots, b_{\lceil n/5\rceil}\}$
- 4. Find median **b** of **B**

#### .emma 11.2.

Median of **B** is an <u>approximate</u> median of **A**. That is, if **b** is used a pivot to partition **A**, then  $|\mathbf{A}_{less}| \leq 7n/10 + 6$  and  $|\mathbf{A}_{greater}| \leq 7n/10 + 6$ .
A storm of medians

```
 \begin{array}{l} \mbox{select}(A, j): \\ \mbox{Form lists } L_1, L_2, \ldots, L_{\lceil n/5\rceil} \mbox{ where } L_i = \{A[5i-4], \ldots, A[5i]\} \\ \mbox{Find median } b_i \mbox{ of each } L_i \mbox{ using brute-force} \\ \mbox{Find median } b \mbox{ of } B = \{b_1, b_2, \ldots, b_{\lceil n/5\rceil}\} \\ \mbox{Partition } A \mbox{ into } A_{less} \mbox{ and } A_{greater} \mbox{ using } b \mbox{ as pivot} \\ \mbox{if } (|A_{less}|) = j \mbox{ return } b \\ \mbox{else } \mbox{if } (|A_{less}|) > j) \\ \mbox{ return select}(A_{less}, j) \\ \mbox{else} \\ \mbox{ return select}(A_{greater}, j - |A_{less}|) \end{array}
```

How do we find median of B?

A storm of medians

```
 \begin{array}{l} \mbox{select}(A, j): \\ \mbox{Form lists } L_1, L_2, \ldots, L_{\lceil n/5\rceil} \mbox{ where } L_i = \{A[5i-4], \ldots, A[5i]\} \\ \mbox{Find median } b_i \mbox{ of each } L_i \mbox{ using brute-force} \\ \mbox{Find median } b \mbox{ of } B = \{b_1, b_2, \ldots, b_{\lceil n/5\rceil}\} \\ \mbox{Partition } A \mbox{ into } A_{less} \mbox{ and } A_{greater} \mbox{ using } b \mbox{ as pivot} \\ \mbox{if } (|A_{less}|) = j \mbox{ return } b \\ \mbox{else } \mbox{if } (|A_{less}|) > j) \\ \mbox{ return select}(A_{less}, j) \\ \mbox{else} \\ \mbox{ return select}(A_{greater}, j - |A_{less}|) \end{array}
```

How do we find median of **B**? Recursively!

A storm of medians

```
 \begin{array}{l} \mbox{select}(A, j): \\ \mbox{Form lists } L_1, L_2, \ldots, L_{\lceil n/5\rceil} \mbox{ where } L_i = \{A[5i-4], \ldots, A[5i]\} \\ \mbox{Find median } b \mbox{ of } each \ L_i \mbox{ using brute-force} \\ \mbox{Find median } b \mbox{ of } B = \{b_1, b_2, \ldots, b_{\lceil n/5\rceil}\} \\ \mbox{Partition } A \mbox{ into } A_{less} \mbox{ and } A_{greater} \mbox{ using } b \mbox{ as pivot} \\ \mbox{if } (|A_{less}|) = j \mbox{ return } b \\ \mbox{else} \mbox{ if } (|A_{less}|) > j) \\ \mbox{ return select}(A_{less}, j) \\ \mbox{else} \\ \mbox{ return select}(A_{greater}, j - |A_{less}|) \end{array}
```

How do we find median of B? Recursively!

A storm of medians

```
select(A, j):
Form lists L<sub>1</sub>, L<sub>2</sub>,..., L<sub>[n/5]</sub> where L<sub>i</sub> = {A[5i - 4],..., A[5i]}
Find median b<sub>i</sub> of each L<sub>i</sub> using brute-force
B = [b_1, b_2, \dots, b_{\lceil n/5\rceil}]
b = select(B, \lceil n/10\rceil)
Partition A into A<sub>less</sub> and A<sub>greater</sub> using b as pivot
if (|A<sub>less</sub>|) = j return b
else if (|A<sub>less</sub>|) > j)
return select(A<sub>less</sub>, j)
else
return select(A<sub>greater</sub>, j - |A<sub>less</sub>|)
```

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

## **11.4.4** Median of medians is a good median

## Median of Medians: Proof of Lemma

Proposition 11.3.

There are at least 3n/10 - 6 elements smaller than the median of medians b.



## Median of Medians: Proof of Lemma

#### Proposition 11.4.

There are at least 3n/10 - 6 elements smaller than the median of medians b.

#### Proof.

At least half of the  $\lfloor n/5 \rfloor$  groups have at least 3 elements smaller than **b**, except for the group containing **b** which has 2 elements smaller than **b**. Hence number of elements smaller than **b** is:

$$3\lfloor \frac{\lfloor n/5 \rfloor + 1}{2} \rfloor - 1 \geq 3n/10 - 6$$

## Median of Medians: Proof of Lemma

#### Proposition 11.5.

There are at least 3n/10 - 6 elements smaller than the median of medians b.

Corollary 11.6.  $|A_{greater}| \le 7n/10 + 6.$ 

Via symmetric argument,

Corollary 11.7.  $|A_{less}| \leq 7n/10 + 6.$ 

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

## **11.4.5** Running time of deterministic median selection

## Running time of deterministic median selection

A dance with recurrences

## $\mathsf{T}(n) \leq \mathsf{T}(\lceil n/5 \rceil) + \max\{\mathsf{T}(|\mathsf{A}_{\scriptscriptstyle \mathsf{less}}|),\mathsf{T}(|\mathsf{A}_{\scriptscriptstyle \mathsf{greater}})|\} + \mathsf{O}(n)$

From Lemma,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\lceil \mathsf{n}/5 \rceil) + \mathsf{T}(\lfloor 7\mathsf{n}/10 + 6 \rfloor) + \mathsf{O}(\mathsf{n})$$
 $\mathsf{T}(\mathsf{n}) = \mathsf{O}(1) \qquad \mathsf{n} < 10$ 

**Exercise:** show that T(n) = O(n)

## Running time of deterministic median selection

A dance with recurrences

## $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\lceil \mathsf{n}/5 \rceil) + \max\{\mathsf{T}(|\mathsf{A}_{\scriptscriptstyle \mathsf{less}}|),\mathsf{T}(|\mathsf{A}_{\scriptscriptstyle \mathsf{greater}})|\} + \mathsf{O}(\mathsf{n})$

From Lemma,

and

## $$\begin{split} \mathsf{T}(\mathsf{n}) &\leq \mathsf{T}(\lceil \mathsf{n}/5 \rceil) + \mathsf{T}(\lfloor 7\mathsf{n}/10 + 6 \rfloor) + \mathsf{O}(\mathsf{n}) \\ \\ \mathsf{T}(\mathsf{n}) &= \mathsf{O}(1) \qquad \mathsf{n} < 10 \end{split}$$

**Exercise:** show that T(n) = O(n)

## Running time of deterministic median selection

A dance with recurrences

## $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\lceil \mathsf{n}/5 \rceil) + \max\{\mathsf{T}(|\mathsf{A}_{\text{less}}|),\mathsf{T}(|\mathsf{A}_{\text{greater}})|\} + \mathsf{O}(\mathsf{n})$

From Lemma,

and

$$\begin{split} \mathsf{T}(\mathsf{n}) &\leq \mathsf{T}(\lceil \mathsf{n}/5 \rceil) + \mathsf{T}(\lfloor 7\mathsf{n}/10 + 6 \rfloor) + \mathsf{O}(\mathsf{n}) \\ \\ \mathsf{T}(\mathsf{n}) &= \mathsf{O}(1) \qquad \mathsf{n} < 10 \end{split}$$

**Exercise:** show that T(n) = O(n)









(1/125)n, (7/250)n, (7/250)n, (49/500)n, (7/250)n, (49/500)n, (49/500)n, (343/1000)n

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2022

# **11.4.6** Epilogue: On selection in linear time

## Summary: Selection in linear time

#### Theorem 11.8.

The algorithm select(A[1..n], k) computes in O(n) deterministic time the kth smallest element in A.

On the other hand, we have:

Lemma 11.9.

The algorithm QuickSelect(A[1..n], k) computes the kth smallest element in A. The running time of QuickSelect is  $\Theta(n^2)$  in the worst case.

## Questions to ponder

- 1. Why did we choose lists of size **5**? Will lists of size **3** work?
- 2. Write a recurrence to analyze the algorithm's running time if we choose a list of size **k**.

## Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection". Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

## Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

## Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

## Takeaway Points

- 1. Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- 2. Recursive algorithms naturally lead to recurrences.
- 3. Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.