
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

Divide & conquer:
Kartsuba’s Algorithm and Linear
Time Selection
Lecture 11
Thursday, September 29, 2022

LATEXed: October 13, 2022 14:18

1 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.1
Problem statement: Multiplying numbers +
a slow algorithm
FLNAME:11.1.0.0 ZZZ:11.1.0.0 Problem statement: Multiplying numbers + a slow algorithm

2 / 51

The Problem: Multiplying numbers

Given two large positive integer numbers b and c, with n digits, compute the number
b ∗ c.

3 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

Egyptian multiplication: 1850BC (3870 years ago?)
From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 34 + 1 76
76 34

152 17
152 16 + 1 152
152 16
304 8
608 4

1216 2
2432 1 2432

2660

4 / 51

The problem: Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and adding the partial
products.

3141
×2718
25128
3141

21987
6282
8537238

5 / 51

Time Analysis of Grade School Multiplication

1. Each partial product: Θ(n)

2. Number of partial products: Θ(n)

3. Addition of partial products: Θ(n2)

4. Total time: Θ(n2)

6 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.2
Multiplication using Divide and Conquer
FLNAME:11.2.0.0 ZZZ:11.2.0.0 Multiplication using Divide and Conquer

7 / 51

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

1. b = bn−1bn−2 . . . b0 and c = cn−1cn−2 . . . c0

2. b = bn−1 . . . bn/20 . . . 0 + bn/2−1 . . . b0

3. b(x) = bLx + bR, where x = 10n/2, bL = bn−1 . . . bn/2 and bR = bn/2−1 . . . b0

4. Similarly c(x) = cLx + cR where cL = cn−1 . . . cn/2 and cR = cn/2−1 . . . c0

8 / 51

Example

1234× 5678 = (12x + 34)× (56x + 78) for x = 100.

= 12 · 56 · x2 + (12 · 78 + 34 · 56)x + 34 · 78.

1234× 5678 = (100× 12 + 34)× (100× 56 + 78)

= 10000× 12× 56

+100× (12× 78 + 34× 56)

+34× 78

9 / 51

Divide and Conquer for multiplication

Assume n is a power of 2 for simplicity and numbers are in decimal.

1. b = bn−1bn−2 . . . b0 and c = cn−1cn−2 . . . c0

2. b ≡ b(x) = bLx + bR

where x = 10n/2, bL = bn−1 . . . bn/2 and bR = bn/2−1 . . . b0

3. c ≡ c(x) = cLx + cR where cL = cn−1 . . . cn/2 and cR = cn/2−1 . . . c0

Therefore, for x = 10n/2, we have

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

= bLcLx2 + (bLcR + bRcL)x + bRcR

= 10nbLcL + 10n/2(bLcR + bRcL) + bRcR

10 / 51

Divide and Conquer for multiplication

Assume n is a power of 2 for simplicity and numbers are in decimal.

1. b = bn−1bn−2 . . . b0 and c = cn−1cn−2 . . . c0

2. b ≡ b(x) = bLx + bR

where x = 10n/2, bL = bn−1 . . . bn/2 and bR = bn/2−1 . . . b0

3. c ≡ c(x) = cLx + cR where cL = cn−1 . . . cn/2 and cR = cn/2−1 . . . c0

Therefore, for x = 10n/2, we have

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

= bLcLx2 + (bLcR + bRcL)x + bRcR

= 10nbLcL + 10n/2(bLcR + bRcL) + bRcR

10 / 51

Time Analysis

bc = 10nbLcL + 10n/2(bLcR + bRcL) + bRcR

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts
(adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

11 / 51

Time Analysis

bc = 10nbLcL + 10n/2(bLcR + bRcL) + bRcR

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts
(adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

11 / 51

Time Analysis

bc = 10nbLcL + 10n/2(bLcR + bRcL) + bRcR

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts
(adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

11 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.3
Faster multiplication: Karatsuba’s
Algorithm
FLNAME:11.3.0.0 ZZZ:11.3.0.0 Faster multiplication: Karatsuba’s Algorithm

12 / 51

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac− bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d)− ac− bd

13 / 51

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac− bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d)− ac− bd

13 / 51

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac− bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d)− ac− bd

13 / 51

Gauss technique for polynomials

p(x) = ax + b and q(x) = cx + d.

p(x)q(x) = acx2 + (ad + bc)x + bd.

p(x)q(x) = acx2 +
(
(a + b)(c + d)− ac− bd

)
x + bd.

14 / 51

Gauss technique for polynomials

p(x) = ax + b and q(x) = cx + d.

p(x)q(x) = acx2 + (ad + bc)x + bd.

p(x)q(x) = acx2 +
(
(a + b)(c + d)− ac− bd

)
x + bd.

14 / 51

Improving the Running Time

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

15 / 51

Improving the Running Time

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

= bLcLx2 + (bLcR + bRcL)x + bRcR

15 / 51

Improving the Running Time

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

= bLcLx2 + (bLcR + bRcL)x + bRcR

= (bL ∗ cL)x2 +
(

(bL + bR) ∗ (cL + cR)− bL ∗ cL − bR ∗ cR

)
x + bR ∗ cR

15 / 51

Improving the Running Time

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

= bLcLx2 + (bLcR + bRcL)x + bRcR

= (bL ∗ cL)x2 +
(

(bL + bR) ∗ (cL + cR)− bL ∗ cL − bR ∗ cR

)
x + bR ∗ cR

Recursively compute only bLcL, bRcR, (bL + bR)(cL + cR).

15 / 51

Improving the Running Time

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

= bLcLx2 + (bLcR + bRcL)x + bRcR

= (bL ∗ cL)x2 +
(

(bL + bR) ∗ (cL + cR)− bL ∗ cL − bR ∗ cR

)
x + bR ∗ cR

Recursively compute only bLcL, bRcR, (bL + bR)(cL + cR).

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means T(n) = O(nlog2 3) = O(n1.585)

15 / 51

State of the Art

Schönhage-Strassen 1971: O(n log n log log n) time using Fast-Fourier-Transform
(FFT)

Martin Fürer 2007: O(n log n2O(log∗ n)) time

Conjecture

There is an O(n log n) time algorithm.

16 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.3.1
Solving the recurrences for fast
multiplication
FLNAME:11.3.1.0 ZZZ:11.3.1.0 Solving the recurrences for fast multiplication

17 / 51

Analyzing the Recurrences

1. Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim:
T(n) = Θ(n2).

2. Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim:
T(n) = Θ(n1+log 1.5)

Use recursion tree method:

1. In both cases, depth of recursion L = log n.

2. Work at depth i is 4in/2i and 3in/2i respectively: number of children at depth i
times the work at each child

3. Total work is therefore n
∑L

i=0 2i and n
∑L

i=0(3/2)i respectively.

18 / 51

Analyzing the Recurrences

1. Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim:
T(n) = Θ(n2).

2. Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim:
T(n) = Θ(n1+log 1.5)

Use recursion tree method:

1. In both cases, depth of recursion L = log n.

2. Work at depth i is 4in/2i and 3in/2i respectively: number of children at depth i
times the work at each child

3. Total work is therefore n
∑L

i=0 2i and n
∑L

i=0(3/2)i respectively.

18 / 51

Analyzing the recurrence with four recursive calls

T(n) = 4T(n/2) + O(n), T(1) = 1

19 / 51

Analyzing the recurrence with three recursive calls

T(n) = 3T(n/2) + O(n), T(1) = 1

20 / 51

Analyzing the recurrence with two recursive calls

T(n) = 2T(n/2) + O(n), T(1) = 1

21 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.4
Selecting in Unsorted Lists
FLNAME:11.4.0.0 ZZZ:11.4.0.0 Selecting in Unsorted Lists

22 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.4.1
Problem definition and basic algorithm
FLNAME:11.4.1.0 ZZZ:11.4.1.0 Problem definition and basic algorithm

23 / 51

Rank of element in an array

A: an unsorted array of n integers

Definition 11.1.
For 1 ≤ j ≤ n, element of rank j is the jth smallest element in A.

16 1214 20 534 3 19 11

1612 14 205 343 1911

12 3456 789

Unsorted array

Ranks

Sort of array

24 / 51

Problem - Selection

Input Unsorted array A of n integers and integer j

Goal Find the jth smallest number in A (rank j number)

Median: j = b(n + 1)/2c

Simplifying assumption for sake of notation: elements of A are distinct

25 / 51

Problem - Selection

Input Unsorted array A of n integers and integer j

Goal Find the jth smallest number in A (rank j number)

Median: j = b(n + 1)/2c

Simplifying assumption for sake of notation: elements of A are distinct

25 / 51

Algorithm I

1. Sort the elements in A

2. Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?

26 / 51

Algorithm I

1. Sort the elements in A

2. Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?

26 / 51

Algorithm II

If j is small or n− j is small then

1. Find j smallest/largest elements in A in O(jn) time. (How?)

2. Time to find median is O(n2).

27 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.4.2
Quick select
FLNAME:11.4.2.0 ZZZ:11.4.2.0 Quick select

28 / 51

QuickSelect
Divide and Conquer Approach

1. Pick a pivot element a from A

2. Partition A based on a.
Aless = {x ∈ A | x ≤ a} and Agreater = {x ∈ A | x > a}

3. |Aless| = j: return a

4. |Aless| > j: recursively find jth smallest element in Aless

5. |Aless| < j: recursively find kth smallest element in Agreater where k = j− |Aless|.

29 / 51

Example

16 1214 20 534 3 19 11

30 / 51

Time Analysis

1. Partitioning step: O(n) time to scan A

2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

31 / 51

Time Analysis

1. Partitioning step: O(n) time to scan A

2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

31 / 51

Time Analysis

1. Partitioning step: O(n) time to scan A

2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

31 / 51

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

32 / 51

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

32 / 51

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

32 / 51

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

32 / 51

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

32 / 51

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

32 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.4.3
Median of Medians
FLNAME:11.4.3.0 ZZZ:11.4.3.0 Median of Medians

33 / 51

Divide and Conquer Approach
A game of medians

Idea
1. Break input A into many subarrays: L1, . . . Lk.

2. Find median mi in each subarray Li.

3. Find the median x of the medians m1, . . . , mk.

4. Intuition: The median x should be close to being a good median of all the numbers
in A.

5. Use x as pivot in previous algorithm.

34 / 51

New example

The input:
75 31 13 26 83 110 60 120 63 30 3 41 44 107 30 23 91 17 6 110
68 24 41 26 58 57 61 20 52 45 13 79 86 91 55 66 13 103 36 60
19 40 45 111 56 74 17 95 96 77 29 65 36 96 93 119 9 61 3 9

100 3 88 47 115 107 79 39 109 20 59 25 92 81 36 10 30 113 73 116
72 58 24 16 12 69 40 24 19 92 7 65 75 41 43 117 103 38 8 20

Compute median of the medians (recursive call):
72 74 13 66
31 60 65 30
41 39 75 61
26 63 91 8
58 45 43 60

After partition (pivot 60):
19 3 13 16 12 57 17 20 19 20 3 25 92 109 96 79 110 69 83 75
41 24 24 26 56 17 40 24 52 30 7 60 77 81 63 61 107 115 111 72
20 31 41 26 58 30 60 39 36 45 13 65 75 91 120 66 74 61 88 68
9 40 45 47 3 13 23 55 30 44 29 65 86 96 95 117 91 103 100 110

36 58 8 6 38 9 10 43 41 36 59 79 92 107 93 119 103 113 73 116

Tail recursive call: Select element of rank 50 out of 56 elements.
19 3 13 16 12 57 17 20 19 20 3 25
41 24 24 26 56 17 40 24 52 30 7
20 31 41 26 58 30 60 39 36 45 13
9 40 45 47 3 13 23 55 30 44 29

36 58 8 6 38 9 10 43 41 36 59

35 / 51

New example

The input:
75 31 13 26 83 110 60 120 63 30 3 41 44 107 30 23 91 17 6 110
68 24 41 26 58 57 61 20 52 45 13 79 86 91 55 66 13 103 36 60
19 40 45 111 56 74 17 95 96 77 29 65 36 96 93 119 9 61 3 9

100 3 88 47 115 107 79 39 109 20 59 25 92 81 36 10 30 113 73 116
72 58 24 16 12 69 40 24 19 92 7 65 75 41 43 117 103 38 8 20

Compute median of the medians (recursive call):
72 74 13 66
31 60 65 30
41 39 75 61
26 63 91 8
58 45 43 60

After partition (pivot 60):
19 3 13 16 12 57 17 20 19 20 3 25 92 109 96 79 110 69 83 75
41 24 24 26 56 17 40 24 52 30 7 60 77 81 63 61 107 115 111 72
20 31 41 26 58 30 60 39 36 45 13 65 75 91 120 66 74 61 88 68
9 40 45 47 3 13 23 55 30 44 29 65 86 96 95 117 91 103 100 110

36 58 8 6 38 9 10 43 41 36 59 79 92 107 93 119 103 113 73 116

Tail recursive call: Select element of rank 50 out of 56 elements.
19 3 13 16 12 57 17 20 19 20 3 25
41 24 24 26 56 17 40 24 52 30 7
20 31 41 26 58 30 60 39 36 45 13
9 40 45 47 3 13 23 55 30 44 29

36 58 8 6 38 9 10 43 41 36 59

35 / 51

New example

The input:
75 31 13 26 83 110 60 120 63 30 3 41 44 107 30 23 91 17 6 110
68 24 41 26 58 57 61 20 52 45 13 79 86 91 55 66 13 103 36 60
19 40 45 111 56 74 17 95 96 77 29 65 36 96 93 119 9 61 3 9

100 3 88 47 115 107 79 39 109 20 59 25 92 81 36 10 30 113 73 116
72 58 24 16 12 69 40 24 19 92 7 65 75 41 43 117 103 38 8 20

Compute median of the medians (recursive call):
72 74 13 66
31 60 65 30
41 39 75 61
26 63 91 8
58 45 43 60

After partition (pivot 60):
19 3 13 16 12 57 17 20 19 20 3 25 92 109 96 79 110 69 83 75
41 24 24 26 56 17 40 24 52 30 7 60 77 81 63 61 107 115 111 72
20 31 41 26 58 30 60 39 36 45 13 65 75 91 120 66 74 61 88 68
9 40 45 47 3 13 23 55 30 44 29 65 86 96 95 117 91 103 100 110

36 58 8 6 38 9 10 43 41 36 59 79 92 107 93 119 103 113 73 116

Tail recursive call: Select element of rank 50 out of 56 elements.
19 3 13 16 12 57 17 20 19 20 3 25
41 24 24 26 56 17 40 24 52 30 7
20 31 41 26 58 30 60 39 36 45 13
9 40 45 47 3 13 23 55 30 44 29

36 58 8 6 38 9 10 43 41 36 59

35 / 51

New example

The input:
75 31 13 26 83 110 60 120 63 30 3 41 44 107 30 23 91 17 6 110
68 24 41 26 58 57 61 20 52 45 13 79 86 91 55 66 13 103 36 60
19 40 45 111 56 74 17 95 96 77 29 65 36 96 93 119 9 61 3 9

100 3 88 47 115 107 79 39 109 20 59 25 92 81 36 10 30 113 73 116
72 58 24 16 12 69 40 24 19 92 7 65 75 41 43 117 103 38 8 20

Compute median of the medians (recursive call):
72 74 13 66
31 60 65 30
41 39 75 61
26 63 91 8
58 45 43 60

After partition (pivot 60):
19 3 13 16 12 57 17 20 19 20 3 25 92 109 96 79 110 69 83 75
41 24 24 26 56 17 40 24 52 30 7 60 77 81 63 61 107 115 111 72
20 31 41 26 58 30 60 39 36 45 13 65 75 91 120 66 74 61 88 68
9 40 45 47 3 13 23 55 30 44 29 65 86 96 95 117 91 103 100 110

36 58 8 6 38 9 10 43 41 36 59 79 92 107 93 119 103 113 73 116

Tail recursive call: Select element of rank 50 out of 56 elements.
19 3 13 16 12 57 17 20 19 20 3 25
41 24 24 26 56 17 40 24 52 30 7
20 31 41 26 58 30 60 39 36 45 13
9 40 45 47 3 13 23 55 30 44 29

36 58 8 6 38 9 10 43 41 36 59

35 / 51

Example

11 7 3 42 174 310 1 92 87 12 19 15

�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X

i�0

Å
9

10

ãi
=

11n
5
· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��

36 / 51

Example

11 7 3 42 174 310 1 92 87 12 19 15

�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X

i�0

Å
9

10

ãi
=

11n
5
· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��

36 / 51

Choosing the pivot
A clash of medians

1. Partition array A into dn/5e lists of 5 items each.
L1 = {A[1], A[2], . . . , A[5]}, L2 = {A[6], . . . , A[10]}, . . .,
Li = {A[5i + 1], . . . , A[5i− 4]}, . . ., Ldn/5e = {A[5dn/5e − 4, . . . , A[n]}.

2. For each i find median bi of Li using brute-force in O(1) time. Total O(n) time

3. Let B = {b1, b2, . . . , bdn/5e}
4. Find median b of B

Lemma 11.2.
Median of B is an approximate median of A. That is, if b is used a pivot to partition A,
then |Aless| ≤ 7n/10 + 6 and |Agreater| ≤ 7n/10 + 6.

37 / 51

Choosing the pivot
A clash of medians

1. Partition array A into dn/5e lists of 5 items each.
L1 = {A[1], A[2], . . . , A[5]}, L2 = {A[6], . . . , A[10]}, . . .,
Li = {A[5i + 1], . . . , A[5i− 4]}, . . ., Ldn/5e = {A[5dn/5e − 4, . . . , A[n]}.

2. For each i find median bi of Li using brute-force in O(1) time. Total O(n) time

3. Let B = {b1, b2, . . . , bdn/5e}
4. Find median b of B

Lemma 11.2.
Median of B is an approximate median of A. That is, if b is used a pivot to partition A,
then |Aless| ≤ 7n/10 + 6 and |Agreater| ≤ 7n/10 + 6.

37 / 51

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B?

38 / 51

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B? Recursively!

38 / 51

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B? Recursively!

38 / 51

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

B = [b1, b2, . . . , bdn/5e]
b = select(B, dn/10e)
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

39 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.4.4
Median of medians is a good median
FLNAME:11.4.4.0 ZZZ:11.4.4.0 Median of medians is a good median

40 / 51

Median of Medians: Proof of Lemma

Proposition 11.3.
There are at least 3n/10− 6 elements smaller than the median of medians b.�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X

i�0

Å
9

10

ãi
=

11n
5
· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��

�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X

i�0

Å
9

10

ãi
=

11n
5
· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��

41 / 51

Median of Medians: Proof of Lemma

Proposition 11.4.
There are at least 3n/10− 6 elements smaller than the median of medians b.

Proof.
At least half of the bn/5c groups have at least 3 elements smaller than b, except for
the group containing b which has 2 elements smaller than b. Hence number of elements
smaller than b is:

3b
bn/5c+ 1

2
c − 1 ≥ 3n/10− 6

42 / 51

Median of Medians: Proof of Lemma

Proposition 11.5.
There are at least 3n/10− 6 elements smaller than the median of medians b.

Corollary 11.6.
|Agreater| ≤ 7n/10 + 6.

Via symmetric argument,

Corollary 11.7.
|Aless| ≤ 7n/10 + 6.

43 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.4.5
Running time of deterministic median
selection
FLNAME:11.4.5.0 ZZZ:11.4.5.0 Running time of deterministic median selection

44 / 51

Running time of deterministic median selection
A dance with recurrences

T(n) ≤ T(dn/5e) + max{T(|Aless|), T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(n) = O(1) n < 10

Exercise: show that T(n) = O(n)

45 / 51

Running time of deterministic median selection
A dance with recurrences

T(n) ≤ T(dn/5e) + max{T(|Aless|), T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(n) = O(1) n < 10

Exercise: show that T(n) = O(n)

45 / 51

Running time of deterministic median selection
A dance with recurrences

T(n) ≤ T(dn/5e) + max{T(|Aless|), T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(n) = O(1) n < 10

Exercise: show that T(n) = O(n)

45 / 51

Recursion tree fill in
n

n/5

46 / 51

Recursion tree fill in
n

n/5

(1/5)n, (7/10)n

46 / 51

Recursion tree fill in
n

n/5

(1/25)n, (7/50)n, (7/50)n, (49/100)n

46 / 51

Recursion tree fill in
n

n/5

(1/125)n, (7/250)n, (7/250)n, (49/500)n, (7/250)n, (49/500)n, (49/500)n,
(343/1000)n

46 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

11.4.6
Epilogue: On selection in linear time
FLNAME:11.4.6.0 ZZZ:11.4.6.0 Epilogue: On selection in linear time

47 / 51

Summary: Selection in linear time

Theorem 11.8.
The algorithm select(A[1 . . n], k) computes in O(n) deterministic time the kth
smallest element in A.

On the other hand, we have:

Lemma 11.9.
The algorithm QuickSelect(A[1 . . n], k) computes the kth smallest element in A.
The running time of QuickSelect is Θ(n2) in the worst case.

48 / 51

Questions to ponder

1. Why did we choose lists of size 5? Will lists of size 3 work?

2. Write a recurrence to analyze the algorithm’s running time if we choose a list of
size k.

49 / 51

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

50 / 51

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

50 / 51

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

50 / 51

Takeaway Points

1. Recursion tree method and guess and verify are the most reliable methods to
analyze recursions in algorithms.

2. Recursive algorithms naturally lead to recurrences.

3. Some times one can look for certain type of recursive algorithms (reverse
engineering) by understanding recurrences and their behavior.

51 / 51

	Problem statement: Multiplying numbers + a slow algorithm
	Multiplication using Divide and Conquer
	Faster multiplication: Karatsuba's Algorithm
	Solving the recurrences for fast multiplication

	Selecting in Unsorted Lists
	Problem definition and basic algorithm
	Quick select
	Median of Medians
	Median of medians is a good median
	Running time of deterministic median selection
	Epilogue: On selection in linear time

