Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

Context Free Languages and Grammars

Lecture 7
Tuesday, September 13, 2022

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.1

A fluffy introduction to context free languages, push down automatas

What stack got to do with it?

What's a stack but a second hand memory?

1. DFA/NFA/Regular expressions.
\equiv constant memory computation.
2. Turing machines DFA/NFA + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

What's a stack but a second hand memory?

1. DFA/NFA/Regular expressions.
\equiv constant memory computation.
2. NFA + stack

三 context free grammars (CFG).
3. Turing machines DFA/NFA + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

What's a stack but a second hand memory?

1. DFA/NFA/Regular expressions.
\equiv constant memory computation.
2. NFA + stack
\equiv context free grammars (CFG).
3. Turing machines DFA/NFA + unbounded memory.
\equiv a standard computer/program.
\equiv NFA with two stacks.

Context Free Languages and Grammars

- Programming Language Specification
- Parsing
- Natural language understanding
- Generative model giving structure

Programming Languages

<relational-expression> $::=$	<shift-expression>
	$\|$<relational-expression> \llshift-expression> <relational-expression\gg <shift-expression> <relational-expression> <" <shift-expression> <relational-expression\gg \llshift-expression>

<shift-expression> ::= <additive-expression>
<shift-expression> <\lladditive-expression>
<shift-expression\gg> <additive-expression>
<additive-expression> : := <multiplicative-expression>
<additive-expression> + <multiplicative-expression> <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
<multiplicative-expression> * <cast-expression> <multiplicative-expression> / <cast-expression> <multiplicative-expression> of <cast-expression>
<cast-expression> ::= <unary-expression>
| (<type-name>) <cast-expression>
<unary-expression> ::= <postfix-expression>
++ <unary-expression>
-- <unary-expression>
sizeof <unary-expression>
sizeof <unary-expre
sizeof <type-name>
<postfix-expression> ::= <primary-expression>
<postfix-expression> [<expression>]
<postfix-expression> (\{<assignment-expression>\}*)
<postfix-expression> . <identifier>
<postfix-expression> -> <identifier>
<postfix-expression> ++
<postfix-expression> --

Natural Language Processing

English sentences can be described as
$\langle S\rangle \rightarrow\langle N P\rangle\langle V P\rangle$
$\langle N P\rangle \rightarrow\langle C N\rangle \mid\langle C N\rangle\langle P P\rangle$
$\langle V P\rangle \rightarrow\langle C V\rangle \mid\langle C V\rangle\langle P P\rangle$
$\langle P P\rangle \rightarrow\langle P\rangle\langle C N\rangle$
$\langle C N\rangle \rightarrow\langle A\rangle\langle N\rangle$
$\langle C V\rangle \rightarrow\langle V\rangle \mid\langle V\rangle\langle N P\rangle$
$\langle A\rangle \rightarrow a \mid$ the
$\langle N\rangle \rightarrow$ boy | girl | flower
$\langle V\rangle \rightarrow$ touches \mid likes | sees
$\langle P\rangle \rightarrow$ with

English Sentences

Examples
$\overbrace{}^{\text {noun-phrs }}$ verb-phrs
$\overbrace{\underbrace{\text { boy }}_{\text {a }}}^{\text {sees }}$
article noun verb
$\underbrace{\text { noum-phrs }}_{\text {the }} \underbrace{\text { seese }}_{\text {boy }} \underbrace{\text { verb-phrs }}_{\text {afflower }}$
article noun verb noun-phrs

Models of Growth

- L-systems
- http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.2

Formal definition of convex-free languages (CFGs)

Context Free Grammar (CFG) Definition

Definition 7.1.

A CFG is a quadruple $\mathbf{G}=\mathbf{(V , T , P} \mathbf{P} \mathbf{S})$

- \mathbf{V} is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- \mathbf{P} is a finite set of productions, each of the form
where $\mathbf{A} \in \mathbf{V}$ and α is a string in $(\mathbf{V} \cup T)^{*}$.
Formally, $\mathbf{P} \subset \mathbf{V} \times(\mathbf{V} \cup \mathbf{T})^{*}$
- $\mathbf{S} \in \mathbf{V}$ is a start sumbol

$$
\mathbf{G}=(\text { Variables, Terminals, Productions, Start var })
$$

Context Free Grammar (CFG) Definition

Definition 7.1.

A CFG is a quadruple $\mathbf{G}=\mathbf{(V , T , P} \mathbf{P} \mathbf{S})$

- \mathbf{V} is a finite set of non-terminal symbols
- \mathbf{T} is a finite set of terminal symbols (alphabet)
$\rightarrow P$ is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $\mathbf{A} \in V$ and α is a string in $(V \cup T)^{*}$.
Formally, $\mathbf{P} \subset \mathbf{V} \times(\mathbf{V} \cup T)^{*}$
> $\mathbf{S} \in \mathbf{V}$ is a start symbol

$$
\mathbf{G}=(\text { Variables, Terminals, Productions, Start var })
$$

Context Free Grammar (CFG) Definition

Definition 7.1.

A CFG is a quadruple $\mathbf{G}=\mathbf{(V , T , P} \mathbf{P} \mathbf{S})$

- \mathbf{V} is a finite set of non-terminal symbols
- \mathbf{T} is a finite set of terminal symbols (alphabet)
- \mathbf{P} is a finite set of productions, each of the form
$A \rightarrow \alpha$ where $\mathbf{A} \in \mathbf{V}$ and $\boldsymbol{\alpha}$ is a string in $(\mathbf{V} \cup \mathbf{T})^{*}$. Formally, $\mathbf{P} \subset \mathbf{V} \times(\mathbf{V} \cup \mathbf{T})^{*}$.

$$
\mathbf{G}=(\text { Variables, Terminals, Productions, Start var })
$$

Context Free Grammar (CFG) Definition

Definition 7.1.

A CFG is a quadruple $\mathbf{G}=\mathbf{(V , T , P} \mathbf{P} \mathbf{S})$

- \mathbf{V} is a finite set of non-terminal symbols
- \mathbf{T} is a finite set of terminal symbols (alphabet)
- \mathbf{P} is a finite set of productions, each of the form
$\mathrm{A} \rightarrow \boldsymbol{\alpha}$ where $\mathbf{A} \in \mathbf{V}$ and $\boldsymbol{\alpha}$ is a string in $(\mathbf{V} \cup \mathbf{T})^{*}$. Formally, $\mathbf{P} \subset \mathbf{V} \times(\mathbf{V} \cup \mathbf{T})^{*}$.
- $\mathbf{S} \in \mathbf{V}$ is a start symbol

$$
\mathbf{G}=(\text { Variables, Terminals, Productions, Start var })
$$

Example

- $\mathbf{V}=\{\mathbf{S}\}$
- $\mathbf{T}=\{\mathrm{a}, \mathrm{b}\}$
- $\mathbf{P}=\{\mathbf{S} \rightarrow \epsilon \mid \mathbf{a | b | a S a | b S b}\}$ (abbrev. for $\mathbf{S} \rightarrow \epsilon, \mathbf{S} \rightarrow \mathbf{a}, \mathbf{S} \rightarrow \mathbf{b}, \mathbf{S} \rightarrow \mathbf{a S a}, \mathbf{S} \rightarrow \mathbf{b S b}$)

Example

- $\mathbf{V}=\{\mathbf{S}\}$
- $\mathbf{T}=\{\mathrm{a}, \mathrm{b}\}$
- $\mathbf{P}=\{\mathbf{S} \rightarrow \boldsymbol{\epsilon}|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}\}$ (abbrev. for $\mathbf{S} \rightarrow \epsilon, \mathbf{S} \rightarrow \mathbf{a}, \mathbf{S} \rightarrow \mathbf{b}, \mathbf{S} \rightarrow \mathbf{a S a}, \mathbf{S} \rightarrow \mathbf{b S b}$)

S \rightsquigarrow aSa \rightsquigarrow abSba \rightsquigarrow abbSbba \rightsquigarrow abb bbba

What strings can \mathbf{S} generate like this?

Example

- $\mathbf{V}=\{\mathbf{S}\}$
- $\mathbf{T}=\{\mathrm{a}, \mathrm{b}\}$
- $\mathbf{P}=\{\mathbf{S} \rightarrow \boldsymbol{\epsilon}|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}\}$ (abbrev. for $\mathbf{S} \rightarrow \epsilon, \mathbf{S} \rightarrow \mathbf{a}, \mathbf{S} \rightarrow \mathbf{b}, \mathbf{S} \rightarrow \mathbf{a S a}, \mathbf{S} \rightarrow \mathbf{b S b}$)

$$
\mathbf{S} \rightsquigarrow \text { aSa } \rightsquigarrow \text { abSba } \rightsquigarrow \text { abbSbba } \rightsquigarrow \text { abb b bba }
$$

What strings can \mathbf{S} generate like this?

Example formally...

- $\mathbf{V}=\{\mathbf{S}\}$
- $\mathbf{T}=\{\mathrm{a}, \mathrm{b}\}$
- $\mathbf{P}=\{\mathbf{S} \rightarrow \epsilon|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}\}$ (abbrev. for $\mathbf{S} \rightarrow \epsilon, \mathbf{S} \rightarrow \mathbf{a}, \mathbf{S} \rightarrow \mathbf{b}, \mathbf{S} \rightarrow \mathbf{a S a}, \mathbf{S} \rightarrow \mathbf{b S b}$)

$$
\mathbf{G}=\left(\begin{array}{ll}
\{\mathrm{S}\}, & \{\mathbf{a}, \mathrm{b}\},
\end{array} \quad\left\{\begin{array}{c}
\mathrm{S} \rightarrow \epsilon, \\
\mathrm{~S} \rightarrow \mathrm{a}, \\
\mathrm{~S} \rightarrow \mathbf{b} \\
\mathrm{~S} \rightarrow \mathrm{aSa} \\
\mathrm{~S} \rightarrow \mathrm{bSb}
\end{array}\right\} \quad \mathrm{S}\right.
$$

Palindromes

- Madam in Eden I'm Adam
- Dog doo? Good God!
- Dogma: I am God.
- A man, a plan, a canal, Panama
- Are we not drawn onward, we few, drawn onward to new era?
- Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
- http://www.palindromelist.net

Examples

$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Examples
 $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

$\mathrm{S} \rightarrow \epsilon \mid 0 \mathrm{O} 1$

Notation and Convention
Let $\mathbf{G}=\mathbf{(V , T}, \mathbf{P}, \mathbf{S})$ then

- $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \ldots$, in \mathbf{T} (terminals)
- A, B, C, D, ..., in V (non-terminals)
- $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \ldots$ in \mathbf{T}^{*} for strings of terminals
- $\alpha, \boldsymbol{\beta}, \gamma, \ldots$ in $(\mathbf{V} \cup \mathbf{T})^{*}$
- $\mathbf{X}, \mathbf{Y}, \mathbf{X}$ in $\mathbf{V} \cup \mathbf{T}$

"Derives" relation

Formalism for how strings are derived/generated

Definition 7.2.

Let $\mathbf{G}=(\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$ be a CFG. For strings $\alpha_{1}, \boldsymbol{\alpha}_{\mathbf{2}} \in(\mathbf{V} \cup \mathbf{T})^{*}$ we say $\boldsymbol{\alpha}_{\mathbf{1}}$ derives α_{2} denoted by $\alpha_{1} \rightsquigarrow_{\mathrm{G}} \alpha_{2}$ if there exist strings β, γ, δ in $(\mathbf{V} \cup \mathbf{T})^{*}$ such that

- $\alpha_{1}=\beta \mathbf{A} \delta$
- $\alpha_{2}=\beta \gamma \delta$
- $\mathbf{A} \rightarrow \gamma$ is in \mathbf{P}.

Examples: $\mathrm{S} \rightsquigarrow \epsilon, \mathrm{S} \rightsquigarrow 0 \mathrm{~S} 1,0 \mathrm{~S} 1 \rightsquigarrow 00 \mathrm{~S} 11,0 \mathrm{~S} 1 \rightsquigarrow 01$.

"Derives" relation continued

Definition 7.3 .

For integer $\mathbf{k} \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{\mathbf{k}} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:
$-\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
$\triangleright \alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.

- Alternative definition: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow{ }^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$
\rightsquigarrow^{*} is the reflexive and transitive closure of \rightsquigarrow.
$\alpha_{1} \rightsquigarrow_{*}^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some \mathbf{k}.

Examples: S $\mathfrak{\sim}_{*}^{*} \epsilon, 0 \mathrm{~S} 1 \mathfrak{\sim}^{*} 0000011111$

"Derives" relation continued

Definition
 For integer $\mathbf{k} \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{\mathbf{k}} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:

$-\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
$-\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.

- Alternative definition: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$
\sim^{*} is the reflexive and transitive closure of \rightsquigarrow
$\alpha_{1} \rightsquigarrow^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{\mathbf{k}} \alpha_{2}$ for some \mathbf{k}

Examples: S $\mathfrak{*}_{*}^{*} \epsilon, 0 \mathrm{~S} 1 \mathfrak{\sim}^{*} 0000011111$

"Derives" relation continued

Definttion 7.3.
$-\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
$\triangleright \alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.

- Alternative definition: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$
\rightsquigarrow_{*}^{*} is the reflexive and transitive closure of \rightsquigarrow.
$\alpha_{1} \rightsquigarrow^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some \mathbf{k}.

Examples: $\mathrm{S} \leadsto^{*} \epsilon, \mathrm{OS} 1 \leadsto * 0000011111$.

Context Free Languages

Definition 7.4.
The language generated by $\mathrm{CFG} \mathbf{G}=(\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$ is denoted by $\mathbf{L}(\mathbf{G})$ where $\mathbf{L}(\mathbf{G})=\left\{\mathbf{w} \in \mathbf{T}^{*} \mid \mathbf{S} w^{*} \mathbf{w}\right\}$.

Definition 7.5.

A language \mathbf{L} is context free (CFL) if it is generated by a context free grammar. That is, there is a $C F G \mathbf{G}$ such that $\mathbf{L}=\mathbf{L}(\mathbf{G})$

Context Free Languages

Definition 7.4.

The language generated by $\mathrm{CFG} \mathbf{G}=(\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$ is denoted by $\mathbf{L}(\mathbf{G})$ where $\mathbf{L}(\mathbf{G})=\left\{\mathbf{w} \in \mathbf{T}^{*} \mid \mathbf{S} w^{*} \mathbf{w}\right\}$.

Definition 7.5.

A language \mathbf{L} is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG \mathbf{G} such that $\mathbf{L}=\mathbf{L}(\mathbf{G})$.

$$
\begin{aligned}
& \text { Example } \\
& \mathbf{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathbf{n} \geq \mathbf{0}\right\} \\
& \mathbf{S} \rightarrow \boldsymbol{\mathrm { C }} \mid \mathbf{0} \mathbf{S} \mathbf{1} \\
& \mathrm{L}=\left\{\mathbf{0}^{\mathrm{n}} \mathbf{1}^{\mathrm{m}} \mid \mathbf{m}>\mathbf{n}\right\} \\
& \mathrm{L}=\left\{\mathbf{w} \in\{(,)\}^{*} \mid \mathbf{w} \text { is properly nested string of parenthesis }\right\} .
\end{aligned}
$$

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.3

Converting regular languages into CFL

Converting regular languages into CFL

$\mathbf{M}=(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{s}, \mathbf{A}):$ DFA for regular language \mathbf{L}.

Conversion continued...

$\mathbf{G}=\left(\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}\},\{\mathbf{a}, \mathbf{b}\},\left\{\begin{array}{c}\mathbf{A} \rightarrow \mathbf{a A}, \mathbf{A} \rightarrow \mathbf{b A}, \mathbf{A} \rightarrow \mathbf{a B}, \\ \mathbf{B} \rightarrow \mathbf{b C}, \\ \mathbf{C} \rightarrow \mathbf{a D}, \\ \mathbf{D} \rightarrow \mathbf{b E}, \\ \mathbf{E} \rightarrow \mathbf{a E}, \mathbf{E} \rightarrow \mathbf{b E}, \mathbf{E} \rightarrow \varepsilon\end{array}\right\}, \mathbf{A}\right)$

The result...

Lemma 7.1.

For an regular language \mathbf{L}, there is a context-free grammar (CFG) that generates it.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.4

CFL as a python program

$0^{n} 1^{n}$

The grammar G:

$$
\mathrm{S} \rightarrow \varepsilon \mid 0 \mathrm{~S} 1
$$

Can be translated into the python program:

```
#! /bin/python3
import random
#S + epsilon / O S 1
def S():
        match random.randrange(10):
            case 0:
                return # epsilon
            case _:
                    print( "0", end='' )
                        S()
                        print( "1", end='' )
S()
print( "" )
```

$\mathbf{L}(\mathbf{G})=$ any string that this program might output.

Balanced parenthesis expression

The grammar \mathbf{G} :

$$
\mathbf{S} \rightarrow \varepsilon|(\mathbf{S})| \mathbf{S S}
$$

Can be translated into the python program:

```
#! /bin/python3
import random
#S + epsilon / (S) / S S
def S():
    match random.randrange(3):
        case 0: # epsilon
                return
            case 1: # (S)
                print( "(", end='' )
                S()
                print( ")", end='' )
            case _: # SS
                S()
                        S()
S()
print( "" )
```

$\mathbf{L}(\mathbf{G})=$ any string that this program might output.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.5
 Some properties of CFLs

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.5.1
 Closure properties of CFLs

Bad news: Canonical non-CFL

Theorem 7.1.
$\mathbf{L}=\left\{\mathbf{a}^{n} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$ is not context-free.
Proof based on pumping lemma for CFLS. See supplemental for the proof.

More bad news: CFL not closed under intersection

Theorem 7.2.
CFLS are not closed under intersection.

Closure Properties of CFLs

$\mathbf{G}_{1}=\left(\mathbf{V}_{1}, \mathbf{T}, \mathbf{P}_{1}, \mathbf{S}_{1}\right)$ and $\mathbf{G}_{2}=\left(\mathbf{V}_{2}, \mathbf{T}, \mathbf{P}_{2}, \mathbf{S}_{2}\right)$

Assumption: $\mathbf{V}_{1} \cap \mathbf{V}_{\mathbf{2}}=\emptyset$, that is, non-terminals are not shared

Closure Properties of CFLs

$\mathbf{G}_{1}=\left(\mathbf{V}_{1}, \mathbf{T}, \mathbf{P}_{1}, \mathbf{S}_{1}\right)$ and $\mathbf{G}_{2}=\left(\mathbf{V}_{2}, \mathbf{T}, \mathbf{P}_{2}, \mathbf{S}_{2}\right)$
Assumption: $\mathbf{V}_{1} \cap \mathbf{V}_{\mathbf{2}}=\emptyset$, that is, non-terminals are not shared

CFLS are closed under union. $\mathbf{L}_{1}, \mathrm{~L}_{2}$ CFLS implies $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is a CFL.

CFLS are closed under concatenation. $\mathbf{L}_{1}, \mathrm{~L}_{2}$ CFLS implies $\mathrm{L}_{1} \bullet \mathrm{~L}_{2}$ is a CFL.

CFLS are closed under Kleene star.
 If L is a CFL $\Longrightarrow \mathrm{L}^{*}$ is a CFL.

Closure Properties of CFLs

Union

$\mathbf{G}_{1}=\left(\mathbf{V}_{1}, \mathbf{T}, \mathbf{P}_{1}, \mathbf{S}_{1}\right)$ and $\mathbf{G}_{2}=\left(\mathbf{V}_{2}, \mathbf{T}, \mathbf{P}_{2}, \mathbf{S}_{2}\right)$
Assumption: $\mathbf{V}_{1} \cap \mathbf{V}_{\mathbf{2}}=\emptyset$, that is, non-terminals are not shared.

CFLs are closed under union. $\mathbf{L}_{1}, \mathbf{L}_{2}$ CFLS implies $\mathbf{L}_{1} \cup \mathbf{L}_{2}$ is a CFL.

Closure Properties of CFLs

Concatenation
Theorem 7.7 .

Closure Properties of CFLs

Stardom (i.e, Kleene star)
Theorem 7.8.
CFLs are closed under Kleene star.
If \mathbf{L} is a CFL $\Longrightarrow \mathbf{L}^{*}$ is a CFL.

Exercise

- Prove that every regular language is context-free using previous closure properties.
- Prove the set of regular expressions over an alphabet $\boldsymbol{\Sigma}$ forms a non-regular language which is context-free.

Even more bad news: CFL not closed under complement Theorem 7.9.
CFLS are not closed under complement.

Good news: Closure Properties of CFLs continued
Theorem 7.10.
If $\mathbf{L}_{\mathbf{1}}$ is a CFL and $\mathbf{L}_{\mathbf{2}}$ is regular then $\mathbf{L}_{\mathbf{1}} \cap \mathbf{L}_{\mathbf{2}}$ is a CFL.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.5.2

Parse trees and ambiguity

Parse Trees or Derivation Trees

A tree to represent the derivation $\mathbf{S} \sim_{*}^{*} \mathbf{w}$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

Parse Trees or Derivation Trees

A tree to represent the derivation $\mathbf{S} \sim_{*}^{*} \mathbf{w}$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule
A picture is worth a thousand words

Example

Ambiguity in CFLs

Definition 7.11.

A CFG \mathbf{G} is ambiguous if there is a string $\mathbf{w} \in \mathbf{L}(\mathbf{G})$ with two different parse trees. If there is no such string then \mathbf{G} is unambiguous.

Example: S $\boldsymbol{\rightarrow} \mathbf{S} \mathbf{- S | 1 | 2 | 3}$

3-(2-1)

(3-2)-1

Ambiguity in CFLs

- Original grammar: $\mathbf{S} \rightarrow \mathbf{S}-\mathbf{S | 1 | 2 | 3}$
- Unambiguous grammar:

$$
\mathrm{S} \rightarrow \mathrm{~S}-\mathrm{C}|1| 2 \mid 3
$$

$\mathrm{C} \rightarrow \mathbf{1 | 2 | 3}$

Inherently ambiguous languages

Definition 7.12.

A CFL \mathbf{L} is inherently ambiguous if there is no unambiguous CFG \mathbf{G} such that $\mathrm{L}=\mathrm{L}(\mathrm{G})$.

- There exist inherently ambiguous CFLs. Example: $L=\left\{a^{n} b^{m} c^{k} \mid \mathbf{n}=\mathbf{m}\right.$ or $\left.\mathbf{m}=k\right\}$
\rightarrow Given a grammar G it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!

Inherently ambiguous languages

Definition 7.12.

A CFL \mathbf{L} is inherently ambiguous if there is no unambiguous CFG \mathbf{G} such that $\mathrm{L}=\mathrm{L}(\mathrm{G})$.

- There exist inherently ambiguous CFLs.

Example: $\mathbf{L}=\left\{\mathbf{a}^{\mathrm{n}} \mathbf{b}^{\mathrm{m}} \mathbf{c}^{\mathrm{k}} \mid \mathbf{n}=\mathbf{m}\right.$ or $\left.\mathbf{m}=\mathbf{k}\right\}$
\rightarrow Given a grammar G it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!

Inherently ambiguous languages

Definition 7.12.

A CFL \mathbf{L} is inherently ambiguous if there is no unambiguous CFG \mathbf{G} such that $\mathrm{L}=\mathrm{L}(\mathrm{G})$.

- There exist inherently ambiguous CFLs.

Example: $\mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mathbf{c}^{\mathbf{k}} \mid \mathbf{n}=\mathbf{m}\right.$ or $\left.\mathbf{m}=\mathbf{k}\right\}$

- Given a grammar \mathbf{G} it is undecidable to check whether $\mathbf{L}(\mathbf{G})$ is inherently ambiguous. No algorithm!

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.6

CFGs; Proving a grammar generate a specific language

Inductive proofs for CFGs
Question: How do we formally prove that a $\operatorname{CFG} \mathbf{L}(\mathbf{G})=\mathbf{L}$?
Example: $\mathbf{S} \rightarrow \boldsymbol{\epsilon}|\mathbf{a}| \mathbf{b}|\mathbf{a S a}| \mathbf{b S b}$
Theorem 7.1.
$\mathbf{L}(\mathbf{G})=\{$ palindromes $\}=\left\{\mathbf{w} \mid \mathbf{w}=\mathbf{w}^{\mathrm{R}}\right\}$
Two directions:
$-\mathbf{L}(\mathbf{G}) \subseteq \mathbf{L}$, that is, $\mathbf{S} w^{*} \mathbf{w}$ then $\mathbf{w}=\mathbf{w}^{\mathrm{R}}$

- $\mathbf{L} \subseteq \mathbf{L}(\mathbf{G})$, that is, $\mathbf{w}=\mathbf{w}^{R}$ then $S \mathfrak{w}^{*} \mathbf{w}$

Inductive proofs for CFGs

Question: How do we formally prove that a $\mathrm{CFG} \mathbf{L}(\mathbf{G})=\mathbf{L}$?
Example: $\mathbf{S \rightarrow \epsilon | \mathbf { a } | \mathbf { b } | \mathbf { a S a } | \mathbf { b S b } , ~}$
Theorem 7.1.
$\mathbf{L}(\mathbf{G})=\{$ palindromes $\}=\left\{\mathbf{w} \mid \mathbf{w}=\mathbf{w}^{\mathrm{R}}\right\}$
Two directions:

- $\mathbf{L}(\mathbf{G}) \subseteq \mathbf{L}$, that is, $\mathbf{S} w^{*} \mathbf{w}$ then $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$
$-\mathbf{L} \subseteq \mathbf{L}(\mathbf{G})$, that is, $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$ then $\mathbf{S} \mathfrak{w}^{*} \mathbf{w}$

$\mathbf{L}(\mathbf{G}) \subseteq \mathbf{L}$

Show that if $\mathbf{S} \sim * \mathbf{w}$ then $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$

By induction on length of derivation, meaning For all $\mathbf{k} \geq \mathbf{1}, \mathbf{S} \mathfrak{\sim}^{* \mathbf{k}} \mathbf{w}$ implies $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$.
\Rightarrow If $S \rightsquigarrow^{1} w$ then $w=\epsilon$ or $w=a$ or $w=b$. Each case $w=w^{R}$

- Assume that for all $\mathbf{k}<\mathbf{n}$, that if $\mathbf{S} \rightarrow^{\mathbf{k}} \mathbf{w}$ then $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$
- Let $\mathbf{S} \rightsquigarrow^{\mathbf{n}} \mathbf{w}$ (with $\mathbf{n}>\mathbf{1}$). Wlog \mathbf{w} begin with a.
\Rightarrow Then $\mathrm{S} \rightarrow \mathrm{aSa} \rightsquigarrow^{\mathrm{k}-1}$ aua where $\mathrm{w}=$ aua.
\Rightarrow And $\mathbf{S} \rightsquigarrow^{\mathrm{n}-1} \mathbf{u}$ and hence $\mathrm{H}, \mathbf{u}=\mathbf{u}^{\mathrm{R}}$
- Therefore $\mathbf{w}^{r}=(\mathrm{aua})^{\mathrm{R}}=(\mathbf{u a})^{\mathrm{R}} \mathbf{a}=\mathrm{au}^{\mathrm{R}} \mathrm{a}=\mathrm{aua}=w^{2}$

$\mathbf{L}(\mathbf{G}) \subseteq \mathbf{L}$

Show that if $\mathbf{S} w^{*} \mathbf{w}$ then $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$

By induction on length of derivation, meaning
For all $\mathbf{k} \geq \mathbf{1}, \mathbf{S} \mathfrak{\sim}^{* \mathbf{k}} \mathbf{w}$ implies $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$.

- If $\mathbf{S} w^{\mathbf{1}} \mathbf{w}$ then $\mathbf{w}=\epsilon$ or $\mathbf{w}=\mathbf{a}$ or $\mathbf{w}=\mathbf{b}$. Each case $\mathbf{w}=\mathbf{w}^{\mathrm{R}}$.
- Assume that for all $\mathbf{k}<\mathbf{n}$, that if $\mathbf{S} \rightarrow^{\mathbf{k}} \mathbf{w}$ then $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$
- Let $\mathbf{S} \mathfrak{m}^{\mathbf{n}} \mathbf{w}$ (with $\mathbf{n}>\mathbf{1}$). Wlog \mathbf{w} begin with \mathbf{a}.
- Then $\mathbf{S} \rightarrow$ aSa $\rightsquigarrow^{\mathbf{k}-\mathbf{1}}$ aua where $\mathbf{w}=$ aua.
- And $\mathbf{S} \rightsquigarrow^{\mathbf{n - 1}} \mathbf{u}$ and hence $I H, \mathbf{u}=\mathbf{u}^{R}$.
- Therefore $\mathbf{w}^{r}=(\mathrm{aua})^{\mathrm{R}}=(\mathbf{u a})^{\mathrm{R}} \mathbf{a}=a u^{R} \mathbf{a}=\mathrm{aua}=\mathbf{w}$.

$\mathbf{L} \subseteq \mathbf{L}(\mathbf{G})$

Show that if $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$ then $\mathbf{S} \mathfrak{w}^{*} \mathbf{w}$.

By induction on $|\mathbf{w}|$
That is, for all $\mathbf{k} \geq \mathbf{0},|\mathbf{w}|=\mathbf{k}$ and $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$ implies $\mathbf{S} \sim^{*} \mathbf{w}$.

Exercise: Fill in proof.

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.
See Section 5.3.2 of the notes for an example proof.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.7

CFGs normal form

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Normal Forms

Normal forms are a way to restrict form of production rules
Advantage: Simpler/more convenient algorithms and proofs
Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\mathbf{A} \rightarrow \mathbf{B C}$ or $\mathbf{A} \rightarrow \mathbf{a}$. If $\epsilon \in \mathbf{L}$ then $\mathbf{S} \rightarrow \boldsymbol{\epsilon}$ is also allowed.
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- Only productions of the form $\mathrm{A} \rightarrow \mathrm{a} \beta$ are allowed.
- All CFLs without ϵ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\mathbf{A} \rightarrow \mathbf{B C}$ or $\mathbf{A} \rightarrow \mathbf{a}$. If $\epsilon \in \mathbf{L}$ then $\mathbf{S} \rightarrow \boldsymbol{\epsilon}$ is also allowed.
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- Only productions of the form $\mathbf{A} \rightarrow \mathbf{a} \boldsymbol{\beta}$ are allowed.
- All CFLs without ϵ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.8
 Pushdown automatas

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs. PDA is a machine-centric view of CFLs.

Pushdown automata by example

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

7.9

Supplemental: Why $\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}}$ is not CFL

You are bound to repeat yourself...

$\mathbf{L}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

1. For the sake of contradiction assume that there exists a grammar: G a CFG for \mathbf{L}.
2. $\mathbf{T}_{\mathbf{i}}$: minimal parse tree in \mathbf{G} for $\mathbf{a}^{\mathbf{i}} \mathbf{b}^{\mathbf{i}} \mathbf{c}^{\mathbf{i}}$.
3. $\boldsymbol{h}_{\mathrm{i}}=$ height $\left(\mathrm{T}_{\mathrm{i}}\right)$: Length of longest path from root to leaf in T_{i}
4. For any integer \mathbf{t}, there must exist an index $\mathbf{j}(\mathbf{t})$, such that $\mathbf{h}_{\mathbf{j}(\mathrm{t})}>\mathbf{t}$.
5. There an index \mathbf{i}, such that $\mathbf{h}_{\mathbf{j}}>(2 * \#$ variables in $\mathbf{G})$.

You are bound to repeat yourself...

$\mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$.

1. For the sake of contradiction assume that there exists a grammar:
\mathbf{G} a CFG for \mathbf{L}.
2. $\mathbf{T}_{\mathbf{i}}$: minimal parse tree in \mathbf{G} for $\mathbf{a}^{\mathbf{i}} \mathbf{b}^{\mathbf{i}} \mathbf{c}^{\mathbf{i}}$.
3. $\mathbf{h}_{\mathbf{i}}=\operatorname{height}\left(\mathbf{T}_{\mathbf{i}}\right)$: Length of longest path from root to leaf in $\mathbf{T}_{\mathbf{i}}$.
4. For any integer \mathbf{t}, there must exist an index $\mathbf{j}(\mathbf{t})$, such that $\mathbf{h}_{\mathbf{j}(\mathbf{t})}>\mathbf{t}$.
5. There an index \mathbf{j}, such that $\mathbf{h}_{\mathbf{j}}>(\mathbf{2} *$ \# variables in $\mathbf{G})$.

Repetition in the parse tree...

Repetition in the parse tree...

$x y z v w=a^{j} b^{j} \mathbf{c}^{\mathbf{j}}$

Repetition in the parse tree...

$x y z v w=a^{\mathbf{j}} \mathbf{b}^{\mathbf{j}} \mathbf{c}^{\mathbf{j}} \Longrightarrow \mathrm{xy}^{2} \mathbf{z v} \mathbf{v}^{2} w \in \mathbf{L}$

Now for some case analysis...

- We know:
$x y z v w=a^{j} b^{j} \mathbf{c}^{\mathbf{j}}$
$|y|+|v|>0$.
- We proved that $\boldsymbol{\tau}=\mathbf{x y}^{2} \mathbf{z v} \mathbf{v} \mathbf{w} \in \mathbf{L}$.
- If y contains both a and b , then, $\tau=$...a...b...a...b...

Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

- Similarly, not possible that \mathbf{y} contains both \mathbf{b} and c .
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that \mathbf{v} contains both \mathbf{b} and \mathbf{c}.
- If \mathbf{y} contains only as, and \mathbf{v} contains only $\mathbf{b s}$, then... \#a $(\tau) \neq \#_{c}(\tau)$ Not possible.
- Similarly, not possible that \mathbf{y} contains only as, and \mathbf{v} contains only cs. Similarly, not possible that \mathbf{y} contains only $\mathbf{b s}$, and \mathbf{v} contains only $\mathbf{c s}$.
- Must be that $\tau \notin \mathrm{L}$. A contradiction.

Now for some case analysis...

- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\tau=x^{2} \mathbf{z} \mathbf{v}^{2} \mathbf{w} \in \mathbf{L}$.
- If \mathbf{y} contains both \mathbf{a} and \mathbf{b}, then, $\tau=$...a...b...a...b....
- Similarly, not possible that \mathbf{y} contains both \mathbf{b} and \mathbf{c}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{a} and \mathbf{b}.
- Similarly, not possible that v contains both \mathbf{b} and c .
- If \mathbf{y} contains only as, and \mathbf{v} contains only $\mathbf{b s}$, then... $\#_{\mathrm{a}}(\tau) \neq \#_{\mathrm{c}}(\tau)$ Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that \mathbf{y} contains only $\mathbf{b s}$, and \mathbf{v} contains only $\mathbf{c s}$.
- Must be that $\tau \notin \mathrm{L}$. A contradiction.

Now for some case analysis...

- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\boldsymbol{\tau}=\mathrm{xy}^{2} \mathbf{z v} \mathbf{v}^{2} \mathbf{w} \in \mathbf{L}$.
- If \mathbf{y} contains both \mathbf{a} and \mathbf{b}, then, $\tau=$...a...b...a...b.... Impossible, since $\boldsymbol{\tau} \in \mathbf{L}=\left\{\mathbf{a}^{n} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$.
- Similarly, not possible that y contains both b and c .
- Similarly, not possible that \mathbf{v} contains both \mathbf{a} and \mathbf{b}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{b} and \mathbf{c}.
- If y contains only as, and v contains only bs, then... \#a $(\tau) \neq \#_{\mathrm{c}}(\tau)$ Not possible.
- Similarly, not possible that y contains only as, and v contains only cs.

Similarly, not possible that y contains only bs, and v contains only cs.

- Must be that $\tau \notin \mathrm{L}$. A contradiction.

Now for some case analysis...

- We know:
$x y z v w=a^{j} \mathbf{b}^{\mathbf{j}} \mathbf{c}^{\mathbf{j}}$
$|\mathbf{y}|+|\mathbf{v}|>0$.
- We proved that $\tau=x^{2} \mathbf{z}^{2} \mathbf{v}^{2} \mathbf{w} \in \mathbf{L}$.
- If \mathbf{y} contains both \mathbf{a} and \mathbf{b}, then, $\tau=\ldots \mathbf{a} . . . \mathbf{b} . . . \mathbf{a} . . . \mathbf{b} . .$. Impossible, since $\boldsymbol{\tau} \in \mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$.
- Similarly, not possible that \mathbf{y} contains both \mathbf{b} and \mathbf{c}.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that \mathbf{v} contains both \mathbf{b} and \mathbf{c}.
- If \mathbf{y} contains only as, and \mathbf{v} contains only $\mathbf{b s}$, then... \# ${ }_{\mathrm{a}}(\tau) \neq \#_{\mathrm{c}}(\tau)$ Not possible
- Similarly, not possible that \mathbf{y} contains only as, and \mathbf{v} contains only cs. Similarly, not possible that \mathbf{y} contains only $\mathbf{b s}$, and \mathbf{v} contains only cs.
- Must be that $\tau \notin \mathrm{L}$. A contradiction.

Now for some case analysis...

- We know:

$$
\begin{aligned}
& \text { xyzvw }=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x^{2} \mathbf{z}^{2} \mathbf{v}^{2} \mathbf{w} \in \mathbf{L}$.
- If \mathbf{y} contains both \mathbf{a} and \mathbf{b}, then, $\boldsymbol{\tau}=\ldots$....b...a...b.... Impossible, since $\boldsymbol{\tau} \in \mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$.
- Similarly, not possible that \mathbf{y} contains both \mathbf{b} and \mathbf{c}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{a} and \mathbf{b}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{b} and \mathbf{c}.
- If y contains only as, and v contains only bs, then... \# ${ }_{a}(\tau) \neq \#_{c}(\tau)$. Not possible
- Similarly not nossible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin \mathrm{L}$. A contradiction.

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x^{2} \mathbf{z v}^{2} \mathbf{w} \in \mathbf{L}$.
- If \mathbf{y} contains both \mathbf{a} and \mathbf{b}, then, $\boldsymbol{\tau}=\ldots \mathbf{a} . . . \mathbf{b} . . . \mathbf{a} . . . \mathbf{b} . .$. Impossible, since $\boldsymbol{\tau} \in \mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$.
- Similarly, not possible that \mathbf{y} contains both \mathbf{b} and \mathbf{c}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{a} and \mathbf{b}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{b} and \mathbf{c}.
- If \mathbf{y} contains only as, and \mathbf{v} contains only $b s$, then... $\# \mathrm{a}(\tau) \neq \#_{\mathrm{c}}(\tau)$. Not possible.
\rightarrow Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and \mathbf{v} contains only cs.
- Must be that $\tau \notin \mathbb{L}$. A contradiction

Now for some case analysis...

- We know:

$$
\begin{aligned}
& \text { xyzvw }=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x^{2} \mathbf{z v}^{2} \mathbf{w} \in \mathbf{L}$.
- If \mathbf{y} contains both \mathbf{a} and \mathbf{b}, then, $\boldsymbol{\tau}=\ldots$....b...a...b.... Impossible, since $\boldsymbol{\tau} \in \mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$.
- Similarly, not possible that \mathbf{y} contains both \mathbf{b} and \mathbf{c}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{a} and \mathbf{b}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{b} and \mathbf{c}.
- If \mathbf{y} contains only as, and \mathbf{v} contains only $b s$, then... $\# \mathrm{a}(\tau) \neq \#_{\mathrm{c}}(\tau)$. Not possible.
- Similarly, not possible that \mathbf{y} contains only as, and \mathbf{v} contains only cs. Similarly, not possible that \mathbf{y} contains only $\mathbf{b s}$, and \mathbf{v} contains only cs.
- Must be that $\tau \notin \mathrm{L}$. A contradiction.

Now for some case analysis...

- We know:

$$
\begin{aligned}
& \text { xyzvw }=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x^{2} \mathbf{z v}^{2} \mathbf{w} \in \mathbf{L}$.
- If \mathbf{y} contains both \mathbf{a} and \mathbf{b}, then, $\boldsymbol{\tau}=\ldots \mathbf{a} . . . \mathbf{b} . . . \mathbf{a} . . . \mathbf{b} . .$. Impossible, since $\boldsymbol{\tau} \in \mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$.
- Similarly, not possible that \mathbf{y} contains both \mathbf{b} and \mathbf{c}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{a} and \mathbf{b}.
- Similarly, not possible that \mathbf{v} contains both \mathbf{b} and \mathbf{c}.
- If \mathbf{y} contains only as, and \mathbf{v} contains only $b s$, then... $\# \mathrm{a}(\tau) \neq \#_{\mathrm{c}}(\tau)$. Not possible.
- Similarly, not possible that \mathbf{y} contains only as, and \mathbf{v} contains only cs. Similarly, not possible that \mathbf{y} contains only $\mathbf{b s}$, and \mathbf{v} contains only cs.
- Must be that $\tau \notin \mathbf{L}$. A contradiction.

We conclude...

Lemma 7.1.
The language $\mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$ is not CFL (i.e., there is no CFG for it).

