Intro. Algorithms & Models of Computation

Context Free Languages and
Grammars

Lecture 7
Tuesday, September 13, 2022

WTEXed: October 13, 2022 14:18

1/59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.1

A fluffy introduction to context free
languages, push down automatas

2/59

What stack got to do with it?

What's a stack but a second hand memory?

1. DFA/NFA /Regular expressions.
= constant memory computation.

2. Turing machines DFA /NFA + unbounded memory.

= a standard computer/program.

3/59

What stack got to do with it?

What's a stack but a second hand memory?

1. DFA/NFA /Regular expressions.
= constant memory computation.

2. NFA + stack
= context free grammars (CFG).

3. Turing machines DFA /NFA + unbounded memory.
= a standard computer/program.

3/59

What stack got to do with it?

What's a stack but a second hand memory?

1. DFA/NFA /Regular expressions.
= constant memory computation.

2. NFA + stack
= context free grammars (CFG).

3. Turing machines DFA /NFA + unbounded memory.
= a standard computer/program.
= NFA with two stacks.

3/59

Context Free Languages and Grammars

» Programming Language Specification
» Parsing

» Natural language understanding

» Generative model giving structure

> ...

4/59

Programming Languages

<relational- ion> ::= <shift ion>
‘ relational- ion> < <shift ion>
| <relational ion> > <shift ion
| <relational-expression> <= <shift-expression>
| <relational- ion> >= <shift-expression>
<shift-expression> <additive-expression>

<shift on> << <additi
<shift ion> >> <additi:

<additive-expression> ::= <multiplicative-expression>
| <additive-expression> + <multiplicative-expression>
| <additive-expression> - <multiplicative-expression>

<multiplicati - t
| <multiplicati ion> * t ion:
| <multiplicative-expression> / <cast-expression>
| <multiplicati ion> % pression>

t <unary ion
(typ) <cast- ion

<postfix-expression>
| ++ <unary-expression>

| -- <unary-expression>

| <unary-operator> <cast-expression>
I

I

<unary-expression>

sizeof <unary-expression>
sizeof <type-name>
<postfix-expression> ::= <primary-expression>
| <postfix-expression> [<expression>]
| <postfi: ion> ({<assi. ion>}*)
| <postfix-expression> . <identifier>
|
|
|

<postfix-expression> -> <identifier>
<postfix-expression> ++
<postfix-expression> --

5/59

Natural Language Processing

English sentences can be described as

(S) = (NPIV P)

(NP) = (CN) | (CN)(PP)
(VP) = (CV) | (CV(PP)
(PP) — (P)(CN)

(CN) — (ANN)

(CV) = (V) [(V)(NP)
(A) = a | the

(N) = boy | girl | flower
(V) = touches | likes | sees
(P) = with

English Sentences
Ezamples

noun-phrs verh-phrs
A

w boy (8
& Doy G
articlenoun verb
noun-phrs verb-phrs
the boy sces a flower
the

bo Doy sees o flowey
article noun verb noun- phrs

6/59

Models of Growth

» L-systems
» http://www.kevs3d.co.uk/dev/lsystems/

7/59

http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

8/59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.2
Formal definition of convex-free languages

(CFGs)

9/59

Context Free Grammar (CFG) Definition

Definition 7.1.
A CFG is a quadruple G = (V, T, P, S)

» V is a finite set of non-terminal symbols

G=(Variables, Terminals, Productions, Start var)

10/59

Context Free Grammar (CFG) Definition

Definition 7.1.
A CFG is a quadruple G = (V, T, P, S)
» V is a finite set of non-terminal symbols

» T is a finite set of terminal symbols (alphabet)

G=< Variables, Terminals, Productions, Start var)

10/59

Context Free Grammar (CFQG) Definition

Definition 7.1.
A CFG is a quadruple G = (V, T, P, S)
» V is a finite set of non-terminal symbols
» T is a finite set of terminal symbols (alphabet)

» P is a finite set of productions, each of the form
A — o
where A € V and « is a string in (V U T)*.
Formally, P C V x (VU T)*.

G=< Variables, Terminals, Productions, Start var)

10/59

Context Free Grammar (CFQG) Definition

Definition 7.1.
A CFG is a quadruple G = (V, T, P, S)
» V is a finite set of non-terminal symbols
» T is a finite set of terminal symbols (alphabet)

» P is a finite set of productions, each of the form
A — o
where A € V and « is a string in (V U T)*.
Formally, P C V x (VU T)*.

» S € Vs a start symbol

G=< Variables, Terminals, Productions, Start var)

10/59

Example
» V={S}
» T = {a,b}

» P={S —e€|a|b|aSa|bSb}
(abbrev. for S — €¢,S — a,S — b,S — aSa,S — bSb)

11/59

Example

» V={S}
» T = {a,b}
» P={S —e€|a|b|aSa|bSb}
(abbrev. for S — €¢,S — a,S — b,S — aSa,S — bSb)

S ~+ aSa ~+ abSba ~+ abbSbba ~+ abb b bba

11/59

Example

» V={S}
» T = {a,b}
» P={S —e€|a|b|aSa|bSb}
(abbrev. for S — €¢,S — a,S — b,S — aSa,S — bSb)

S ~+ aSa ~+ abSba ~+ abbSbba ~+ abb b bba

What strings can S generate like this?

11/59

Example formally...

» V={S}
» T = {a,b}
» P={S —e€|a|b|aSa|bSb}
(abbrev. for S — €¢,S — a,S — b,S — aSa,S — bSb)

S — €,
S —a,

G=|{s}, {a,b}, S—b S

S — aSa
S — bSb

12/59

Palindromes

» Madam in Eden I'm Adam

Dog doo? Good God!

Dogma: | am God.

A man, a plan, a canal, Panama

Are we not drawn onward, we few, drawn onward to new era?

Doc, note: | dissent. A fast never prevents a fatness. | diet on cod.

vVvyvyVvyyvyy

http://www.palindromelist.net

13/59

http://www.palindromelist.net

Examples
L= {0"1" | n > 0}

14 /59

Examples
L= {0"1" | n > 0}

S — €| 0S1

14 /59

Notation and Convention

Let G = (V, T,P,S) then

» a,b,c,d,...,in T (terminals)
A,B,C,D,...,in V (non-terminals)
U,V,W, X,y,...in T* for strings of terminals
a,B,7y,...in (VUT)*
X,Y,XinVUT

vvyYyy

15/59

“Derives” relation
Formalism for how strings are derived/generated

Definition 7.2.

Let G = (V,T,P,S) be a CFG. For strings a1, ap € (VU T)* we say o derives
a denoted by avg ~»g i if there exist strings 3,7, in (V U T)* such that

> a1=,6‘A6
> az =379
» A — ~isinP.

Examples: S ~» €, S ~» 0S1, 0S1 ~~ 00S11, 0S1 ~~ O1.

16 /59

“Derives”’ relation continued

Definiti - -
For integer k > 0, a; ~+* a inductive defined:
| 4 (851 M->0 (8%) ifa1=a2

> o e oy if o ~ ,61 and ,81 al =L Q.

| 2

17/59

“Derives”’ relation continued

k

For integer k > 0, a; ~* 2 inductive defined:

0

| 4 a1 ~ azifa1=a2

> o e oy if o ~ ,61 and ,81 al =L Q.

» Alternative definition: oy ~¥ g if a; ~*"1 B1 and B; ~ an

17/59

“Derives”’ relation continued

k

For integer k > 0, ay ~~
0

oy inductive defined:

| 4 a1 7 XX ifa1 =
> o e oy if o ~ ,61 and ,81 al =L Q.

» Alternative definition: oy ~¥ g if a; ~*"1 B1 and B; ~ an

*

~¥ is the reflexive and transitive closure of ~.

a1 ~¥ ay if ag ~* ay for some k.

Examples: S ~+ ¢, 0S1 ~+ 0000011111.

17/59

Context Free Languages

Definition 7.4.

The language generated by CFG G = (V, T, P, S) is denoted by L(G) where
L(G) ={w e T*|S ~¥ w}.

18/59

Context Free Languages

Definition 7.4.

The language generated by CFG G = (V, T, P, S) is denoted by L(G) where
L(G) ={w e T*|S ~¥ w}.

Definition 7.5.

A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).

18/59

Example
L ={0"1" | n> 0}

S — €| 0S1
L={0"1" | m > n}

L= {w € {(,)}* ‘ w is properly nested string of parenthesis}.

19/59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.3
Converting regular languages into CF'L

20 /59

Converting regular languages into CF'L
M= (Q,X,d,s,A): DFA for regular language L.

Productions

Variables Terminals Start var

G=< ~~ 2~ {a—aé(ga)|gcQacxr} 2
U{g—e|qeA}

21/59

Conversion continued...

A — aA,A — bA,A — aB,
B — bC,
G= {Aa B,C,D,E},{a,b}, C— aDa 7A
D — bE,
E — aE,E — bE,E — ¢

22/59

The result...

Lemma 7.1. J

For an regular language L, there is a context-free grammar (CFG) that generates it.

23/59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.4
CFL as a python program

24 /59

o"1"

The grammar G:
S — | 0S1

Can be translated into the python program:
#! /bin/python3
import random

S + epsilon | 0 S 1

def SQO:
match random.randrange(10):
case 0:
return # epsilon
case _
print("0", end='")
SO
print("1", end='")
SO
print("")

L(G) = any string that this program might output.

25 /59

Balanced parenthesis expression

The grammar G:

S —e|(S)]SS

Can be translated into the python program:

#! /bin/python3
import random

#S + epsilon | (S) | 88

def SQO:
match random.randrange(3):
case 0: # epsilon
return
case 1: #(S)
print("(", end=""'
O)
print(")", end='"'
case _: # SS
SO
5O
SO
print("")

L(G) = any string that this program might output.

)

)

26 /59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.5
Some properties of CFLs

27 /59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.5.1
Closure properties of CFLS

28 /59

Bad news: Canonical non-CFL

Theorem 7.1.

L = {a"b"c" | n > 0} is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.

29 /59

More bad news: CFL not closed under intersection

Theorem 7.2. J

CFLSs are not closed under intersection.

30/59

Closure Properties of CFLS

Gy = (V1,T,P1,S1) and Gy = (V2, T, P2, S3)
Assumption: V; NV, = 0, that is, non-terminals are not shared

31/59

Closure Properties of CFLS

Gy = (V1,T,P1,S1) and Gy = (V2, T, P2, S3)
Assumption: V; NV, = 0, that is, non-terminals are not shared

CFLs are closed under union. Ly, Ly, CFLS implies Ly U Ly is a CFL. l

CFLs are closed under concatenation. Ly, Ly CFLs implies LyeL, is a CFL.

CFLSs are closed under Kleene star.
IfLisaCFL = L* jsa CFL.

31/59

Closure Properties of CFLS

Union

G; = (V1,T,P1,S1) and Gy = (V2, T, P2, S3)
Assumption: V; NV, = 0, that is, non-terminals are not shared.

CFLs are closed under union. Ly, Ly, CFLS implies Ly U Ly is a CFL. l

32/59

Closure Properties of CFLS

Concatenation

CFLs are closed under concatenation. Ly, L, CFLs implies LyeL, is a CFL.

33/59

Closure Properties of CFLS

Stardom (i.e, Kleene star)

CFLSs are closed under Kleene star.
IfLisa CFL = L* jsa CFL.

34/59

Exercise

» Prove that every regular language is context-free using previous closure properties.

» Prove the set of regular expressions over an alphabet X forms a non-regular
language which is context-free.

35/59

Even more bad news: CFL not closed under complement

CFLs are not closed under complement.

Theorem 7.9. J

36 /59

Good news: Closure Properties of CFLS continued

Theorem 7.10.
If Ly is a CFL and Ly is regular then Ly N Ly is a CFL. J

37/59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.5.2

Parse trees and ambiguity

38/59

Parse Trees or Derivation Trees

A tree to represent the derivation S ~¥ w.
» Rooted tree with root labeled S
» Non-terminals at each internal node of tree
» Terminals at leaves

» Children of internal node indicate how non-terminal was expanded using a
production rule

39/59

Parse Trees or Derivation Trees

A tree to represent the derivation S ~¥ w.
» Rooted tree with root labeled S
» Non-terminals at each internal node of tree
» Terminals at leaves

» Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words

39/59

Example

S <«— Aderivation tree for abbaab

/ ’ \ (also called “parse tree”)

a
/!\
ad S->aSb|bSa|SS|ab| ba|ce
/ \
S S
&£

b a

A corresponding derivation of abbaab

S > aSb > abSab > abSSab > abbaSab > abbaab

40 /59

Ambiguity in CF'LS

Definition 7.11.
A CFG G is ambiguous if there is a string w € L(G) with two different parse trees. If

there is no such string then G is unambiguous.

Example: S-S —-S|1]2]|3

S S
s PR
:ls s/ l\s s/ |—\s |

oo s

3—(2-1) (3-2)—1

41/59

Ambiguity in CF'Ls

» Original grammar: S - S-S |12 3
» Unambiguous grammar:
S—S—-C|1]2]|3
C—>1]2]|3

The grammar forces a parse
corresponding to left-to-right
evaluation.

42/59

Inherently ambiguous languages

Definition 7.12.

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

43/59

Inherently ambiguous languages

Definition 7.12.

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

» There exist inherently ambiguous CF'Ls.
Example: L = {a"b™c* | n = m or m = k}
>

43/59

Inherently ambiguous languages

Definition 7.12.

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

» There exist inherently ambiguous CF'Ls.
Example: L = {a"b™c* | n = m or m = k}

» Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

43/59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.6

CF'GsS; Proving a grammar generate a
specific language

44 /59

Inductive proofs for CFGS
Question: How do we formally prove that a CFG L(G) = L?

Example: S — € | a| b | aSa | bSb

Theorem 7.1.
L(G) = {palindromes} = {w | w = wR} J

45 /59

Inductive proofs for CFGS

Question: How do we formally prove that a CFG L(G) = L?

Example: S — € | a| b | aSa | bSb

Theorem 7.1.
L(G) = {palindromes} = {w | w = wR} J

Two directions:
» L(G) C L, thatis, S ~* w then w = wR
» L C L(G), that is, w = wR then S ~* w

45 /59

L(G) C L

Show that if S ~ w then w = wR

By induction on length of derivation, meaning
Forallk > 1, S ~¥* w implies w = wR

46 /59

L(G) C L

Show that if S ~ w then w = wR

By induction on length of derivation, meaning
Forallk > 1, S ~¥* w implies w = wR

» If S~ wthenw = eorw = aorw = b. Each case w = wR
» Assume that for all k < n, that if S —* w then w = wR

> Let S ~»" w (with n > 1). Wlog w begin with a.
» Then S — aSa ~~*~! aua where w = aua.
» And S ~""1 u and hence IH, u = uR.
» Therefore w" = (aua)® = (ua)Ra = auR

a = aua = w.

46 /59

L C L(G)

Show that if w = wR then S ~ w.

By induction on |w|
That is, forallk > 0, |w| = k and w = wR implies S ~ w.

Exercise: Fill in proof.

47 /59

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

48 /59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.7
CFGS normal form

49 /59

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

50 /59

Normal Forms

Normal forms are a way to restrict form of production rules
Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs
» Chomsky normal form

» Greibach normal form

50 /59

Normal Forms

Chomsky Normal Form:

» Productions are all of the form A — BC or A — a.
If e € L then S — € is also allowed.

» Every CFG G can be converted into CNF form via an efficient algorithm

» Advantage: parse tree of constant degree.

51/59

Normal Forms

Chomsky Normal Form:

» Productions are all of the form A — BC or A — a.
If e € L then S — € is also allowed.

» Every CFG G can be converted into CNF form via an efficient algorithm

» Advantage: parse tree of constant degree.

Greibach Normal Form:
» Only productions of the form A — a3 are allowed.
» All CFLs without € have a grammar in GNF. Efficient algorithm.

» Advantage: Every derivation adds exactly one terminal.

51/59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.8

Pushdown automatas

52/59

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDA = DosH Down Avremaron
= NFA wm smek (LIERo)
L) we DEFnE DPDA Later

Rusw fpop
g‘ﬁ
STACK
b
qQ NO LmT
o ~F o g T™ See
INM Thee

PDAs and CFGs are equivalent: both generate exactly CFLs.
PDA is a machine-centric view of CFLs.

53/59

Pushdown automata by example

54 /59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.9
Supplemental: Why a"b"c" is not CFL

55 /59

You are bound to repeat yourself...

L = {a"b"c" | n > 0}.
1. For the sake of contradiction assume that there exists a grammar:
G a CFG for L.

2. T;: minimal parse tree in G for a'b'c'.

56 /59

You are bound to repeat yourself...

L = {a"b"c" | n > 0}.
1. For the sake of contradiction assume that there exists a grammar:
G a CFG for L.
T;: minimal parse tree in G for a'b'c'.
h; = height(T;): Length of longest path from root to leaf in T;.
For any integer t, there must exist an index j(t), such that h;g) > t.

There an index j, such that h; > (2 * # variables in G>.

o s W

56 /59

Repetition in the parse tree...

57 /59

Repetition in the parse tree...

xyzvw = albid

57 /59

Repetition in the parse tree...

xyzvw = albld = xy%zv’w € L

57 /59

Now for some case analysis...

» We know:
xyzvw = aibld
ly| + |v| > 0.
» We proved that 7 = xy?zv?w € L.

58 /59

Now for some case analysis...

» We know: _
xyzvw = alb'cl
ly| + |v| > 0.
» We proved that 7 = xy?zv?w € L.
» If y contains both a and b, then, 7 = ...a...b...a...b....

58 /59

Now for some case analysis...

» We know: _
xyzvw = alb'cl
ly| + |v| > 0.
» We proved that 7 = xy?zv?w € L.
» If y contains both a and b, then, 7 = ...a...b...a...b....

Impossible, since 7 € L = {a"b"c" | n > 0}.

58 /59

Now for some case analysis...

> We know:
xyzvw = alb'cl
lyl + Iv| > 0.

» We proved that 7 = xy?zv?w € L.

» If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

» Similarly, not possible that y contains both b and c.

58 /59

Now for some case analysis...

» We know:

xyzvw = aibld

ly| + |v| > 0.

We proved that 7 = xy?zv®w € L.

v

» If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.
Similarly, not possible that y contains both b and c.

vy

Similarly, not possible that v contains both a and b.
» Similarly, not possible that v contains both b and c.

58 /59

Now for some case analysis...

» We know:

xyzvw = aibld
lyl + Iv| > 0.

» We proved that 7 = xy?zv?w € L.

v

vvyyy

If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

Similarly, not possible that y contains both b and c.
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c.

If y contains only as, and v contains only bs, then... #,(7) # #.(7).
Not possible.

58 /59

Now for some case analysis...

» We know:

xyzvw = aibld
lyl + Iv| > 0.

» We proved that 7 = xy?zv?w € L.

vvyyy v

v

If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

Similarly, not possible that y contains both b and c.
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c.

If y contains only as, and v contains only bs, then... #,(7) # #.(7).
Not possible.

Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

58 /59

Now for some case analysis...

>

We know:
xyzvw = alb'cl
ly[+ [v] > 0.

» We proved that 7 = xy?zv?w € L.

vvyyy v

v

If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

Similarly, not possible that y contains both b and c.
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c.

If y contains only as, and v contains only bs, then... #,(7) # #.(7).
Not possible.

Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

Must be that 7 € L. A contradiction.

58 /59

We conclude...

Lemma 7.1.
The language L = {a"b"c" | n > 0} is not CFL (i.e., there is no CFG for it). J

59 /59

	A fluffy introduction to context free languages, push down automatas
	Formal definition of convex-free languages (CFGs)
	Converting regular languages into CFL
	CFL as a python program
	Some properties of CFLs
	Closure properties of CFLs
	Parse trees and ambiguity

	CFGs; Proving a grammar generate a specific language
	CFGs normal form
	Pushdown automatas
	Supplemental: Why bluean bluebn bluecn is not CFL

