
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

Context Free Languages and
Grammars
Lecture 7
Tuesday, September 13, 2022

LATEXed: October 13, 2022 14:18

1 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.1
A fluffy introduction to context free
languages, push down automatas
FLNAME:7.1.0.0 ZZZ:7.1.0.0 A fluffy introduction to context free languages, push down automatas

2 / 59

What stack got to do with it?
What’s a stack but a second hand memory?

1. DFA/NFA/Regular expressions.
≡ constant memory computation.

2. Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.

3 / 59

What stack got to do with it?
What’s a stack but a second hand memory?

1. DFA/NFA/Regular expressions.
≡ constant memory computation.

2. NFA + stack
≡ context free grammars (CFG).

3. Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.

3 / 59

What stack got to do with it?
What’s a stack but a second hand memory?

1. DFA/NFA/Regular expressions.
≡ constant memory computation.

2. NFA + stack
≡ context free grammars (CFG).

3. Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.
≡ NFA with two stacks.

3 / 59

Context Free Languages and Grammars

I Programming Language Specification

I Parsing

I Natural language understanding

I Generative model giving structure

I . . .

4 / 59

Programming Languages

5 / 59

Natural Language Processing

6 / 59

Models of Growth

I L-systems

I http://www.kevs3d.co.uk/dev/lsystems/

7 / 59

http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

8 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.2
Formal definition of convex-free languages
(CFGs)
FLNAME:7.2.0.0 ZZZ:7.2.0.0 Formal definition of convex-free languages (CFGs)

9 / 59

Context Free Grammar (CFG) Definition

Definition 7.1.
A CFG is a quadruple G = (V,T,P, S)

I V is a finite set of non-terminal symbols

I T is a finite set of terminal symbols (alphabet)

I P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

I S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

10 / 59

Context Free Grammar (CFG) Definition

Definition 7.1.
A CFG is a quadruple G = (V,T,P, S)

I V is a finite set of non-terminal symbols

I T is a finite set of terminal symbols (alphabet)

I P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

I S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

10 / 59

Context Free Grammar (CFG) Definition

Definition 7.1.
A CFG is a quadruple G = (V,T,P, S)

I V is a finite set of non-terminal symbols

I T is a finite set of terminal symbols (alphabet)

I P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

I S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

10 / 59

Context Free Grammar (CFG) Definition

Definition 7.1.
A CFG is a quadruple G = (V,T,P, S)

I V is a finite set of non-terminal symbols

I T is a finite set of terminal symbols (alphabet)

I P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

I S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

10 / 59

Example

I V = {S}
I T = {a, b}
I P = {S→ ε | a | b | aSa | bSb}

(abbrev. for S→ ε, S→ a, S→ b, S→ aSa, S→ bSb)

S aSa abSba abbSbba abb b bba

What strings can S generate like this?

11 / 59

Example

I V = {S}
I T = {a, b}
I P = {S→ ε | a | b | aSa | bSb}

(abbrev. for S→ ε, S→ a, S→ b, S→ aSa, S→ bSb)

S aSa abSba abbSbba abb b bba

What strings can S generate like this?

11 / 59

Example

I V = {S}
I T = {a, b}
I P = {S→ ε | a | b | aSa | bSb}

(abbrev. for S→ ε, S→ a, S→ b, S→ aSa, S→ bSb)

S aSa abSba abbSbba abb b bba

What strings can S generate like this?

11 / 59

Example formally...

I V = {S}
I T = {a, b}
I P = {S→ ε | a | b | aSa | bSb}

(abbrev. for S→ ε, S→ a, S→ b, S→ aSa, S→ bSb)

G =

{S}, {a, b},

S→ ε,
S→ a,
S→ b

S→ aSa
S→ bSb

 S

12 / 59

Palindromes

I Madam in Eden I’m Adam

I Dog doo? Good God!

I Dogma: I am God.

I A man, a plan, a canal, Panama

I Are we not drawn onward, we few, drawn onward to new era?

I Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.

I http://www.palindromelist.net

13 / 59

http://www.palindromelist.net

Examples

L = {0n1n | n ≥ 0}

S→ ε | 0S1

14 / 59

Examples

L = {0n1n | n ≥ 0}

S→ ε | 0S1

14 / 59

Notation and Convention

Let G = (V,T,P, S) then

I a, b, c, d, . . . , in T (terminals)

I A,B,C,D, . . . , in V (non-terminals)

I u, v,w, x, y, . . . in T∗ for strings of terminals

I α, β, γ, . . . in (V ∪ T)∗

I X,Y,X in V ∪ T

15 / 59

“Derives” relation

Formalism for how strings are derived/generated

Definition 7.2.
Let G = (V,T,P, S) be a CFG. For strings α1, α2 ∈ (V ∪ T)∗ we say α1 derives
α2 denoted by α1 G α2 if there exist strings β, γ, δ in (V ∪ T)∗ such that

I α1 = βAδ

I α2 = βγδ

I A→ γ is in P.

Examples: S ε, S 0S1, 0S1 00S11, 0S1 01.

16 / 59

“Derives” relation continued

Definition 7.3.
For integer k ≥ 0, α1 k α2 inductive defined:

I α1 0 α2 if α1 = α2

I α1 k α2 if α1 β1 and β1 k−1 α2.

I Alternative definition: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k.

Examples: S ∗ ε, 0S1 ∗ 0000011111.

17 / 59

“Derives” relation continued

Definition 7.3.
For integer k ≥ 0, α1 k α2 inductive defined:

I α1 0 α2 if α1 = α2

I α1 k α2 if α1 β1 and β1 k−1 α2.

I Alternative definition: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k.

Examples: S ∗ ε, 0S1 ∗ 0000011111.

17 / 59

“Derives” relation continued

Definition 7.3.
For integer k ≥ 0, α1 k α2 inductive defined:

I α1 0 α2 if α1 = α2

I α1 k α2 if α1 β1 and β1 k−1 α2.

I Alternative definition: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k.

Examples: S ∗ ε, 0S1 ∗ 0000011111.

17 / 59

Context Free Languages

Definition 7.4.
The language generated by CFG G = (V,T,P, S) is denoted by L(G) where
L(G) = {w ∈ T∗ | S ∗ w}.

Definition 7.5.
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).

18 / 59

Context Free Languages

Definition 7.4.
The language generated by CFG G = (V,T,P, S) is denoted by L(G) where
L(G) = {w ∈ T∗ | S ∗ w}.

Definition 7.5.
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).

18 / 59

Example

L = {0n1n | n ≥ 0}

S→ ε | 0S1

L = {0n1m | m > n}

L =
{

w ∈
{

(,)
}∗ ∣∣∣ w is properly nested string of parenthesis

}
.

19 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.3
Converting regular languages into CFL
FLNAME:7.3.0.0 ZZZ:7.3.0.0 Converting regular languages into CFL

20 / 59

Converting regular languages into CFL

M = (Q,Σ, δ, s,A): DFA for regular language L.

G =
(Variables︷︸︸︷

Q ,

Terminals︷︸︸︷
Σ ,

Productions︷ ︸︸ ︷
{q→ aδ(q, a) | q ∈ Q, a ∈ Σ}

∪ {q→ ε | q ∈ A} ,

Start var︷︸︸︷
s

)

CA B D E

a, b a, b

a ab b

21 / 59

Conversion continued...

CA B D E

a, b a, b

a ab b

G =

{A,B,C,D,E}, {a, b},

A→ aA,A→ bA,A→ aB,

B→ bC,
C→ aD,
D→ bE,

E→ aE,E→ bE,E→ ε

 ,A

22 / 59

The result...

Lemma 7.1.
For an regular language L, there is a context-free grammar (CFG) that generates it.

23 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.4
CFL as a python program
FLNAME:7.4.0.0 ZZZ:7.4.0.0 CFL as a python program

24 / 59

0n1n

The grammar G:
S→ ε | 0S1

Can be translated into the python program:
#! /bin/python3

import random

S → epsilon | 0 S 1

def S():

match random.randrange(10):

case 0:

return # epsilon

case _:

print("0", end='')

S()

print("1", end='')

S()

print("")

L(G) = any string that this program might output.
25 / 59

Balanced parenthesis expression

The grammar G:
S→ ε | (S) | SS

Can be translated into the python program:
#! /bin/python3

import random

S → epsilon | (S) | S S

def S():

match random.randrange(3):

case 0: # epsilon

return

case 1: # (S)

print("(", end='')

S()

print(")", end='')

case _: # SS

S()

S()

S()

print("")

L(G) = any string that this program might output.
26 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.5
Some properties of CFLs
FLNAME:7.5.0.0 ZZZ:7.5.0.0 Some properties of CFLs

27 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.5.1
Closure properties of CFLs
FLNAME:7.5.1.0 ZZZ:7.5.1.0 Closure properties of CFLs

28 / 59

Bad news: Canonical non-CFL

Theorem 7.1.
L = {anbncn | n ≥ 0} is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.

29 / 59

More bad news: CFL not closed under intersection

Theorem 7.2.
CFLs are not closed under intersection.

30 / 59

Closure Properties of CFLs

G1 = (V1,T,P1, S1) and G2 = (V2,T,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem 7.3.
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem 7.4.
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

Theorem 7.5.
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.

31 / 59

Closure Properties of CFLs

G1 = (V1,T,P1, S1) and G2 = (V2,T,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem 7.3.
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem 7.4.
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

Theorem 7.5.
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.

31 / 59

Closure Properties of CFLs
Union

G1 = (V1,T,P1, S1) and G2 = (V2,T,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared.

Theorem 7.6.
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

32 / 59

Closure Properties of CFLs
Concatenation

Theorem 7.7.
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

33 / 59

Closure Properties of CFLs
Stardom (i.e, Kleene star)

Theorem 7.8.
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.

34 / 59

Exercise

I Prove that every regular language is context-free using previous closure properties.

I Prove the set of regular expressions over an alphabet Σ forms a non-regular
language which is context-free.

35 / 59

Even more bad news: CFL not closed under complement

Theorem 7.9.
CFLs are not closed under complement.

36 / 59

Good news: Closure Properties of CFLs continued

Theorem 7.10.
If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.

37 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.5.2
Parse trees and ambiguity
FLNAME:7.5.2.0 ZZZ:7.5.2.0 Parse trees and ambiguity

38 / 59

Parse Trees or Derivation Trees

A tree to represent the derivation S ∗ w.

I Rooted tree with root labeled S

I Non-terminals at each internal node of tree

I Terminals at leaves

I Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words

39 / 59

Parse Trees or Derivation Trees

A tree to represent the derivation S ∗ w.

I Rooted tree with root labeled S

I Non-terminals at each internal node of tree

I Terminals at leaves

I Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words

39 / 59

Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)

40 / 59

Ambiguity in CFLs

Definition 7.11.
A CFG G is ambiguous if there is a string w ∈ L(G) with two different parse trees. If
there is no such string then G is unambiguous.

Example: S→ S− S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1

41 / 59

Ambiguity in CFLs

I Original grammar: S→ S− S | 1 | 2 | 3

I Unambiguous grammar:
S→ S− C | 1 | 2 | 3
C→ 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1

The grammar forces a parse
corresponding to left-to-right
evaluation.

42 / 59

Inherently ambiguous languages

Definition 7.12.
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

I There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

I Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

43 / 59

Inherently ambiguous languages

Definition 7.12.
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

I There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

I Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

43 / 59

Inherently ambiguous languages

Definition 7.12.
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

I There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

I Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

43 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.6
CFGs; Proving a grammar generate a
specific language
FLNAME:7.6.0.0 ZZZ:7.6.0.0 CFGs; Proving a grammar generate a specific language

44 / 59

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S→ ε | a | b | aSa | bSb

Theorem 7.1.
L(G) = {palindromes} = {w | w = wR}

Two directions:

I L(G) ⊆ L, that is, S ∗ w then w = wR

I L ⊆ L(G), that is, w = wR then S ∗ w

45 / 59

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S→ ε | a | b | aSa | bSb

Theorem 7.1.
L(G) = {palindromes} = {w | w = wR}

Two directions:

I L(G) ⊆ L, that is, S ∗ w then w = wR

I L ⊆ L(G), that is, w = wR then S ∗ w

45 / 59

L(G) ⊆ L

Show that if S ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ∗k w implies w = wR.

I If S 1 w then w = ε or w = a or w = b. Each case w = wR.

I Assume that for all k < n, that if S→k w then w = wR

I Let S n w (with n > 1). Wlog w begin with a.
I Then S→ aSa k−1 aua where w = aua.
I And S n−1 u and hence IH, u = uR.
I Therefore wr = (aua)R = (ua)Ra = auRa = aua = w.

46 / 59

L(G) ⊆ L

Show that if S ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ∗k w implies w = wR.

I If S 1 w then w = ε or w = a or w = b. Each case w = wR.

I Assume that for all k < n, that if S→k w then w = wR

I Let S n w (with n > 1). Wlog w begin with a.
I Then S→ aSa k−1 aua where w = aua.
I And S n−1 u and hence IH, u = uR.
I Therefore wr = (aua)R = (ua)Ra = auRa = aua = w.

46 / 59

L ⊆ L(G)

Show that if w = wR then S ∗ w.

By induction on |w|
That is, for all k ≥ 0, |w| = k and w = wR implies S ∗ w.

Exercise: Fill in proof.

47 / 59

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

48 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.7
CFGs normal form
FLNAME:7.7.0.0 ZZZ:7.7.0.0 CFGs normal form

49 / 59

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

I Chomsky normal form

I Greibach normal form

50 / 59

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

I Chomsky normal form

I Greibach normal form

50 / 59

Normal Forms

Chomsky Normal Form:

I Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S→ ε is also allowed.

I Every CFG G can be converted into CNF form via an efficient algorithm

I Advantage: parse tree of constant degree.

Greibach Normal Form:

I Only productions of the form A→ aβ are allowed.

I All CFLs without ε have a grammar in GNF. Efficient algorithm.

I Advantage: Every derivation adds exactly one terminal.

51 / 59

Normal Forms

Chomsky Normal Form:

I Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S→ ε is also allowed.

I Every CFG G can be converted into CNF form via an efficient algorithm

I Advantage: parse tree of constant degree.

Greibach Normal Form:

I Only productions of the form A→ aβ are allowed.

I All CFLs without ε have a grammar in GNF. Efficient algorithm.

I Advantage: Every derivation adds exactly one terminal.

51 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.8
Pushdown automatas
FLNAME:7.8.0.0 ZZZ:7.8.0.0 Pushdown automatas

52 / 59

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs.
PDA is a machine-centric view of CFLs.

53 / 59

Pushdown automata by example

q0 q1 q2

[, ǫ → [(, ǫ → (

), (→ ǫ], [→ ǫ

ǫ, ǫ → $ ǫ, $ → ǫ

54 / 59

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

7.9
Supplemental: Why anbncn is not CFL
FLNAME:7.9.0.0 ZZZ:7.9.0.0 Supplemental: Why anbncn is not CFL

55 / 59

You are bound to repeat yourself...

L = {anbncn | n ≥ 0}.
1. For the sake of contradiction assume that there exists a grammar:

G a CFG for L.

2. Ti: minimal parse tree in G for aibici.

3. hi = height(Ti): Length of longest path from root to leaf in Ti.

4. For any integer t, there must exist an index j(t), such that hj(t) > t.

5. There an index j, such that hj >
(

2 ∗ # variables in G
)
.

56 / 59

You are bound to repeat yourself...

L = {anbncn | n ≥ 0}.
1. For the sake of contradiction assume that there exists a grammar:

G a CFG for L.

2. Ti: minimal parse tree in G for aibici.

3. hi = height(Ti): Length of longest path from root to leaf in Ti.

4. For any integer t, there must exist an index j(t), such that hj(t) > t.

5. There an index j, such that hj >
(

2 ∗ # variables in G
)
.

56 / 59

Repetition in the parse tree...

α

β

57 / 59

Repetition in the parse tree...

α

β

α

x y z v w

β

xyzvw = ajbjcj

57 / 59

Repetition in the parse tree...

α

x y z v w

β

α

x w

β

β′

y z v

y v

xyzvw = ajbjcj =⇒ xy2zv2w ∈ L

57 / 59

Now for some case analysis...

I We know:
xyzvw = ajbjcj

|y|+ |v| > 0.

I We proved that τ = xy2zv2w ∈ L.

I If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.

I Similarly, not possible that y contains both b and c.

I Similarly, not possible that v contains both a and b.

I Similarly, not possible that v contains both b and c.

I If y contains only as, and v contains only bs, then... #a(τ) 6= #c(τ).
Not possible.

I Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

I Must be that τ /∈ L. A contradiction.

58 / 59

Now for some case analysis...

I We know:
xyzvw = ajbjcj

|y|+ |v| > 0.

I We proved that τ = xy2zv2w ∈ L.

I If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.

I Similarly, not possible that y contains both b and c.

I Similarly, not possible that v contains both a and b.

I Similarly, not possible that v contains both b and c.

I If y contains only as, and v contains only bs, then... #a(τ) 6= #c(τ).
Not possible.

I Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

I Must be that τ /∈ L. A contradiction.

58 / 59

Now for some case analysis...

I We know:
xyzvw = ajbjcj

|y|+ |v| > 0.

I We proved that τ = xy2zv2w ∈ L.

I If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.

I Similarly, not possible that y contains both b and c.

I Similarly, not possible that v contains both a and b.

I Similarly, not possible that v contains both b and c.

I If y contains only as, and v contains only bs, then... #a(τ) 6= #c(τ).
Not possible.

I Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

I Must be that τ /∈ L. A contradiction.

58 / 59

Now for some case analysis...

I We know:
xyzvw = ajbjcj

|y|+ |v| > 0.

I We proved that τ = xy2zv2w ∈ L.

I If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.

I Similarly, not possible that y contains both b and c.

I Similarly, not possible that v contains both a and b.

I Similarly, not possible that v contains both b and c.

I If y contains only as, and v contains only bs, then... #a(τ) 6= #c(τ).
Not possible.

I Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

I Must be that τ /∈ L. A contradiction.

58 / 59

Now for some case analysis...

I We know:
xyzvw = ajbjcj

|y|+ |v| > 0.

I We proved that τ = xy2zv2w ∈ L.

I If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.

I Similarly, not possible that y contains both b and c.

I Similarly, not possible that v contains both a and b.

I Similarly, not possible that v contains both b and c.

I If y contains only as, and v contains only bs, then... #a(τ) 6= #c(τ).
Not possible.

I Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

I Must be that τ /∈ L. A contradiction.

58 / 59

Now for some case analysis...

I We know:
xyzvw = ajbjcj

|y|+ |v| > 0.

I We proved that τ = xy2zv2w ∈ L.

I If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.

I Similarly, not possible that y contains both b and c.

I Similarly, not possible that v contains both a and b.

I Similarly, not possible that v contains both b and c.

I If y contains only as, and v contains only bs, then... #a(τ) 6= #c(τ).
Not possible.

I Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

I Must be that τ /∈ L. A contradiction.

58 / 59

Now for some case analysis...

I We know:
xyzvw = ajbjcj

|y|+ |v| > 0.

I We proved that τ = xy2zv2w ∈ L.

I If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.

I Similarly, not possible that y contains both b and c.

I Similarly, not possible that v contains both a and b.

I Similarly, not possible that v contains both b and c.

I If y contains only as, and v contains only bs, then... #a(τ) 6= #c(τ).
Not possible.

I Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

I Must be that τ /∈ L. A contradiction.

58 / 59

Now for some case analysis...

I We know:
xyzvw = ajbjcj

|y|+ |v| > 0.

I We proved that τ = xy2zv2w ∈ L.

I If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.

I Similarly, not possible that y contains both b and c.

I Similarly, not possible that v contains both a and b.

I Similarly, not possible that v contains both b and c.

I If y contains only as, and v contains only bs, then... #a(τ) 6= #c(τ).
Not possible.

I Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

I Must be that τ /∈ L. A contradiction.

58 / 59

We conclude...

Lemma 7.1.
The language L = {anbncn | n ≥ 0} is not CFL (i.e., there is no CFG for it).

59 / 59

	A fluffy introduction to context free languages, push down automatas
	Formal definition of convex-free languages (CFGs)
	Converting regular languages into CFL
	CFL as a python program
	Some properties of CFLs
	Closure properties of CFLs
	Parse trees and ambiguity

	CFGs; Proving a grammar generate a specific language
	CFGs normal form
	Pushdown automatas
	Supplemental: Why bluean bluebn bluecn is not CFL

