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Not all languages are regular
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Regular Languages, DFAs, NFAs

Theorem 6.1.
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

I Each DFA M can be represented as a string over a finite alphabet Σ by
appropriate encoding

I Hence number of regular languages is countably infinite

I Number of languages is uncountably infinite

I Hence there must be a non-regular language!
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A direct proof

L =
{

0i1i
∣∣ i ≥ 0

}
= {ε, 01, 0011, 000111, · · · , }

Theorem 6.2.
L is not regular.
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A Simple and Canonical Non-regular Language

L =
{

0i1i
∣∣ i ≥ 0

}
= {ε, 01, 0011, 000111, · · · , }

Theorem 6.3.
L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in
input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
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Proof by Contradiction

I Suppose L is regular. Then there is a DFA M such that L(M) = L.

I Let M = (Q, {0, 1}, δ, s,A) where |Q| = n.

Consider strings ε, 0, 00, 000, · · · , 0n total of n + 1 strings.

What states does M reach on the above strings? Let qi = δ∗(s, 0i).

By pigeon hole principle qi = qj for some 0 ≤ i < j ≤ n.
That is, M is in the same state after reading 0i and 0j where i 6= j.

M should accept 0i1i but then it will also accept 0j1i where i 6= j.
This contradicts the fact that M accepts L. Thus, there is no DFA for L.
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Equivalence between states

Definition 6.1.
M = (Q,Σ, δ, s,A): DFA.
Two states p, q ∈ Q are equivalent if for all strings w ∈ Σ∗, we have that

δ∗(p,w) ∈ A ⇐⇒ δ∗(q,w) ∈ A.

One can merge any two states that are equivalent into a single state.
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Distinguishing between states

Definition 6.2.
M = (Q,Σ, δ, s,A): DFA.
Two states p, q ∈ Q are distinguishable if there exists a string w ∈ Σ∗, such that

δ∗(p,w) ∈ A and δ∗(q,w) /∈ A.

or
δ∗(p,w) /∈ A and δ∗(q,w) ∈ A.

9 / 51



Distinguishable prefixes

M = (Q,Σ, δ, s,A): DFA
Idea: Every string w ∈ Σ∗ defines a state ∇w = δ∗(s,w).

Definition 6.3.
Two strings u,w ∈ Σ∗ are distinguishable for M (or L(M)) if ∇u and ∇w are
distinguishable.

Definition 6.4 (Direct restatement).
Two prefixes u,w ∈ Σ∗ are distinguishable for a language L if there exists a string x,
such that ux ∈ L and wx /∈ L (or ux /∈ L and wx ∈ L).
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Distinguishable means different states

Lemma 6.5.
L: regular language.
M = (Q,Σ, δ, s,A): DFA for L.
If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y.

Reminder: ∇x = δ∗(s, x) ∈ Q and ∇y = δ∗(s, y) ∈ Q
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Proof by a figure
Possible Not possible
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Distinguishable strings means different states: Proof

Lemma 6.6.
L: regular language.
M = (Q,Σ, δ, s,A): DFA for L.
If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y.

Proof.
Assume for the sake of contradiction that ∇x = ∇y.
By assumption ∃w ∈ Σ∗ such that ∇xw ∈ A and ∇yw /∈ A.
=⇒ A 3 ∇xw = δ∗(s, xw) = δ∗(∇x,w)= δ∗(∇y,w)

= δ∗(s, yw) = ∇yw /∈ A.
=⇒ A 3 ∇yw /∈ A. Impossible!

Assumption that ∇x = ∇y is false.
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Review questions...

1. Prove for any i 6= j then 0i and 0j are distinguishable for the language{
0k1k

∣∣ k ≥ 0
}

.

2. Let L be a regular language, and let w1, . . . ,wk be strings that are all pairwise
distinguishable for L. Prove that any DFA for L must have at least k states.

3. Prove that
{

0k1k
∣∣ k ≥ 0

}
is not regular.
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Fooling Sets

Definition 6.1.
For a language L over Σ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language L = {0k1k | k ≥ 0}.

Theorem 6.2.
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F| states.
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Recall

Already proved the following lemma:

Lemma 6.3.
L: regular language.
M = (Q,Σ, δ, s,A): DFA for L.
If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y.

Reminder: ∇x = δ∗(s, x).
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Proof of theorem

Theorem 6.4 (Reworded.).
L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.
Let F = {w1,w2, . . . ,wm) be the fooling set.
Let M = (Q,Σ, δ, s,A) be any DFA that accepts L.
Let qi = ∇wi = δ∗(s, xi).
By lemma qi 6= qj for all i 6= j.
As such, |Q| ≥ |{q1, . . . , qm}| = |{w1, . . . ,wm}| = |F|.

18 / 51



Infinite Fooling Sets

Corollary 6.5.
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1,w2, . . . ⊆ F be an infinite sequence of strings such that every pair of them are
distinguishable.
Assume for contradiction that ∃ M a DFA for L.
Let Fi = {w1, . . . ,wi}.
By theorem, # states of M ≥ |Fi| = i, for all i.
As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.
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Examples

I {0k1k | k ≥ 0}
I {bitstrings with equal number of 0s and 1s}
I {0k1` | k 6= `}
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Harder example: The language of squares is not regular

{0k2 | k ≥ 0}
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Really hard: Primes are not regular
An exercise left for your enjoyment{

0k
∣∣ k is a prime number

}
Hints:

1. Probably easier to prove directly on the automata.

2. There are infinite number of prime numbers.

3. For every n > 0, observe that n!, n! + 1, . . . , n! + n are all composite – there are
arbitrarily big gaps between prime numbers.
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Exponential gap between NFA and DFA size

L4 = {w ∈ {0, 1}∗ | w has a 1 located 4 positions from the end}

DFA:

q
q1000

 0 

q0001

 1 

q1001
q0010  0 

q0011

 1 

q1100

 0  1 

q1101

q1010 0 

q1011 1 

q0100  0 

q0101 1 

q0110  0 
q0111

 1 

q1110

 0 

 1 

q1111
 0 

 1 

 0 

 1 

 0 

 1 

 0 

 1 
 0 

 1 

 0 

 1 
 0 

 1 

 0 

 1 

 0 

 1 

NFA:

q q4

 0,1 

q1 1 q2 0, 1 q3 0, 1  0, 1 
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Exponential gap between NFA and DFA size

Lk = {w ∈ {0, 1}∗ | w has a 1 k positions from the end}
Recall that Lk is accepted by a NFA N with k + 1 states.

Theorem 6.6.
Every DFA that accepts Lk has at least 2k states.

Claim 6.7.
F = {w ∈ {0, 1}∗ : |w| = k} is a fooling set of size 2k for Lk.

Why?

I Suppose a1a2 . . . ak and b1b2 . . . bk are two distinct bitstrings of length k

I Let i be first index where ai 6= bi

I y = 0k−i−1 is a distinguishing suffix for the two strings
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How do pick a fooling set

How do we pick a fooling set F?

I If x, y are in F and x 6= y they should be distinguishable! Of course.

I All strings in F except maybe one should be prefixes of strings in the language L.
For example if L = {0k1k | k ≥ 0} do not pick 1 and 10 (say). Why?
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Non-regularity via closure properties

H = {bitstrings with equal number of 0s and 1s}

H′ = {0k1k | k ≥ 0}

Suppose we have already shown that L′ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

H′ = H ∩ L(0∗1∗)
Claim: The above and the fact that L′ is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since L(0∗1∗) is regular, and regular languages are closed
under intersection, H′ also would be regular. But we know H′ is not regular, a
contradiction.
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Non-regularity via closure properties

General recipe:

Apply 
closure 
properties

L1

L2

Ln

L?

Lnon-regular
KNOWN 
REGULAR

UNKNOWN
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Proving non-regularity: Summary

I Method of distinguishing suffixes. To prove that L is non-regular find an infinite
fooling set.

I Closure properties. Use existing non-regular languages and regular languages to
prove that some new language is non-regular.

I Pumping lemma. We did not cover it but it is sometimes an easier proof technique
to apply, but not as general as the fooling set technique.
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One automata to rule them all

“Myhill-Nerode Theorem”: A regular language L has a unique (up to naming) minimal
automata, and it can be computed efficiently once any DFA is given for L.
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Myhill-Nerode Theorem: Equivalence
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Indistinguishability

Recall:

Definition 6.1.
For a language L over Σ and two strings x, y ∈ Σ∗ we say that x and y are
distinguishable with respect to L if there is a string w ∈ Σ∗ such that exactly one of
xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation ≡L over strings in Σ∗ as follows: x ≡L y iff
x and y are indistinguishable with respect to L.

Definition 6.2.
x ≡L y means that ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L.
In words: x is equivalent to y under L.
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Example: Equivalence classes

q0

q1 0 

q2

 0 

 0 
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Indistinguishability

Claim 6.3.
≡L is an equivalence relation over Σ∗.

Proof.
1. Reflexive: ∀x ∈ Σ∗: ∀w ∈ Σ∗: xw ∈ L ⇐⇒ xw ∈ L. =⇒ x ≡L x.

2. Symmetry: x ≡L y then ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L
∀w ∈ Σ∗: yw ∈ L ⇐⇒ xw ∈ L =⇒ y ≡L x .

3. Transitivity: x ≡L y and y ≡L z
∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L and ∀w ∈ Σ∗: yw ∈ L ⇐⇒ zw ∈ L
=⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ zw ∈ L
=⇒ x ≡L z.
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Equivalences over automatas...

Claim 6.4 (Just proved.).
≡L is an equivalence relation over Σ∗.

Therefore, ≡L partitions Σ∗ into a collection of equivalence classes.

Definition 6.5.
L: A language For a string x ∈ Σ∗, let

[x] = [x]L = {y ∈ Σ∗ | x ≡L y}
be the equivalence class of x according to L.

Definition 6.6.
[L] = {[x]L | x ∈ Σ∗} is the set of equivalence classes of L.
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Strings in the same equivalence class are indistinguishable

Lemma 6.7.
Let x, y be two distinct strings.
x ≡L y ⇐⇒ x, y are indistinguishable for L.

Proof.
x ≡L y =⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L
x and y are indistinguishable for L.

x 6≡L y =⇒ ∃w ∈ Σ∗: xw ∈ L and yw 6∈ L
=⇒ x and y are distinguishable for L.
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All strings arriving at a state are in the same class

Lemma 6.8.
M = (Q,Σ, δ, s,A) a DFA for a language L.
For any q ∈ A, let Lq = {w ∈ Σ∗ | ∇w = δ∗(s,w) = q}.
Then, there exists a string x, such that Lq ⊆ [x]L.
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An inefficient automata

q0

q1 0 q3 q4
 0 

q2 0  0 

q5

 0 

 0 
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6.5.2
Stating and proving the Myhill-Nerode
Theorem
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Equivalences over automatas...

Claim 6.9 (Just proved).
Let x, y be two distinct strings.
x ≡L y ⇐⇒ x, y are indistinguishable for L.

Corollary 6.10.
If ≡L is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary 6.11.
If ≡L has infinite number of equivalence classes =⇒ ∃ infinite fooling set for L.
=⇒ L is not regular.
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Equivalence classes as automata

Lemma 6.12.
For all x, y ∈ Σ∗, if [x]L = [y]L, then for any a ∈ Σ, we have [xa]L = [ya]L.

Proof.
[x] = [y] =⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L
=⇒ ∀w′ ∈ Σ∗: xaw′ ∈ L ⇐⇒ yaw′ ∈ L // w = aw′

=⇒ [xa]L = [ya]L.
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Set of equivalence classes

Lemma 6.13.
If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.
Set of states: Q = [L]
Start state: s = [ε]L.
Accept states: A = {[x]L | x ∈ L}.
Transition function: δ([x]L, a) = [xa]L.
M = (Q,Σ, δ, s,A): The resulting DFA.
Clearly, M is a DFA with n states, and it accepts L.
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Myhill-Nerode Theorem

Theorem 6.14 (Myhill-Nerode).
L is regular ⇐⇒ ≡L has a finite number of equivalence classes.
If ≡L is finite with n equivalence classes then there is a DFA M accepting L with
exactly n states and this is the minimum possible.

Corollary 6.15.
A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA
M′ such that L(M) = L(M′) and M′ has the fewest possible states among all such
DFAs.
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What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it
can be computed efficiently once any DFA is given for L.
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Exercise

1. Given two DFAs M1,M2 describe an efficient algorithm to decide if
L(M1) = L(M2).

2. Given DFA M, and two states q, q′ of M, show an efficient algorithm to decide if
q and q′ are distinguishable. (Hint: Use the first part.)

3. Given a DFA M for a language L, describe an efficient algorithm for computing
the minimal automata (as far as the number of states) that accepts L.
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Non-regularity via “looping”

Claim 6.1.
The language L = {anbn | n ≥ 0} is not regular.

Proof: Assume for contradiction L is regular.
=⇒ ∃ DFA M = (Q,Σ, δ, q0, F) for L. That is L = L(M).

n = |Q|: number of states of M.
Consider the string anbn. Let pτ = δ∗(q0, aτ ), for τ = 0, . . . , n.
p0p1 . . . pn: n + 1 states. M has n states.
By pigeon hole principle, must be i < j, such that pi = pj.
=⇒ δ∗(pi.aj−i) = pi (its a loop!).

For x = ai, y = aj−i, z = an−jbn, we have

δ∗(q0, an+j−ibn) = δ∗(q0, xyyz) = δ∗

(
δ∗
(
δ∗
(
δ∗(q0, x), y

)
, y
)
, z

)
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Proof continued
Non-regularity via “looping”

We have: pi = δ∗(q0, ai) and δ∗(pi.aj−) = pi.

δ∗(q0, an+j−ibn) = δ∗

(
δ∗
(
δ∗
(
δ∗(q0, ai), aj−i

)
, aj−i

)
, an−jbn

)

= δ∗

(
δ∗

(
δ∗
(
δ∗
(
pi, aj−i

)
, aj−i

)
, an−jbn

)

= δ∗

(
δ∗

(
δ∗
(
δ∗(q0, ai), aj−i

)
, an−jbn

)

= δ∗

(
δ∗

(
δ∗
(

pi, aj−i
)
, an−jbn

)
= δ∗(q0, anbn) ∈ A.

=⇒ an+j−ibn ∈ L, which is false. Contradiction.
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The pumping lemma

The previous argument implies that any regular language must suffer from loops (we
omit the proof):

Theorem 6.2 (Pumping Lemma.).

Let L be a regular language. Then there exists an integer p (the “pumping length”)
such that for any string w ∈ L with |w| ≥ p, w can be written as xyz with the
following properties:

I |xy| ≤ p.

I |y| ≥ 1 (i.e. y is not the empty string).

I xykz ∈ L for every k ≥ 0.
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