Intro. Algorithms \& Models of Computation

 CS/ECE 374A, Fall 2022
Proving Non-regularity

Lecture 6
Thursday, September 8, 2022

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

6.1
 Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem 6.1.

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA \mathbf{M} can be represented as a string over a finite alphabet $\boldsymbol{\Sigma}$ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A direct proof
$\mathbf{L}=\left\{\mathbf{0}^{\mathbf{i}} \mathbf{1}^{\mathbf{i}} \mid \mathbf{i} \geq \mathbf{0}\right\}=\{\epsilon, \mathbf{0 1}, \mathbf{0 0 1 1}, \mathbf{0 0 0 1 1 1}, \cdots$,
Theorem 6.2.
\mathbf{L} is not regular.

A Simple and Canonical Non-regular Language

$\mathrm{L}=\left\{0^{\mathbf{i}} 1^{\mathbf{i}} \mid \mathbf{i} \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots$,

Theorem 6.3.

\mathbf{L} is not regular.
Question: Proof?
Intuition: Any program to recognize \mathbf{L} seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by Contradiction

- Suppose \mathbf{L} is regular. Then there is a DFA \mathbf{M} such that $\mathbf{L}(\mathbf{M})=\mathbf{L}$.
- Let $\mathbf{M}=(\mathbf{Q},\{\mathbf{0}, \mathbf{1}\}, \delta, \mathbf{s}, \mathbf{A})$ where $|\mathbf{Q}|=\mathbf{n}$.

Consider strings $\epsilon, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\mathbf{n}}$ total of $\mathbf{n}+\mathbf{1}$ strings.
What states does M reach on the above strings? Let $\mathbf{q}_{\mathbf{i}}=\delta^{*}\left(\mathrm{~s}, 0^{\mathbf{i}}\right)$.
By pigeon hole principle $\mathbf{q}_{\mathbf{i}}=\mathbf{q}_{\mathbf{j}}$ for some $\mathbf{0} \leq \mathbf{i}<\mathbf{j} \leq \mathbf{n}$.
That is, \mathbf{M} is in the same state after reading $\mathbf{0}^{\mathbf{i}}$ and $\mathbf{0}^{\mathbf{j}}$ where $\mathbf{i} \neq \mathbf{j}$.
\mathbf{M} should accept $\mathbf{0}^{\mathbf{i}} \mathbf{1}^{\mathbf{i}}$ but then it will also accept $\mathbf{0}^{\mathbf{j}} \mathbf{1}^{\mathbf{i}}$ where $\mathbf{i} \neq \mathbf{j}$. This contradicts the fact that \mathbf{M} accepts \mathbf{L}. Thus, there is no DFA for \mathbf{L}.

Intro. Algorithms \& Models of Computation

 CS/ECE 374A, Fall 2022
6.2
 When two states are equivalent?

Equivalence between states

Definition 6.1.

$\mathbf{M}=(\mathbf{Q}, \boldsymbol{\Sigma}, \delta, \mathbf{s}, \mathbf{A}): D F A$.
Two states $\mathbf{p}, \mathbf{q} \in \mathbf{Q}$ are equivalent if for all strings $\mathbf{w} \in \mathbf{\Sigma}^{*}$, we have that

$$
\delta^{*}(\mathbf{p}, \mathbf{w}) \in \mathbf{A} \Longleftrightarrow \delta^{*}(\mathbf{q}, \mathbf{w}) \in \mathbf{A} .
$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition 6.2.

$\mathbf{M}=(\mathbf{Q}, \boldsymbol{\Sigma}, \delta, \mathrm{s}, \mathbf{A}): \mathrm{DFA}$.
Two states $\mathbf{p}, \mathbf{q} \in \mathbf{Q}$ are distinguishable if there exists a string $\mathbf{w} \in \boldsymbol{\Sigma}^{*}$, such that

$$
\delta^{*}(\mathbf{p}, \mathbf{w}) \in \mathbf{A} \quad \text { and } \quad \delta^{*}(\mathbf{q}, \mathbf{w}) \notin \mathbf{A} .
$$

or

$$
\delta^{*}(\mathbf{p}, \mathbf{w}) \notin \mathbf{A} \quad \text { and } \quad \delta^{*}(\mathbf{q}, \mathbf{w}) \in \mathbf{A} .
$$

Distinguishable prefixes

$\mathbf{M}=(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{s}, \mathbf{A}):$ DFA
Idea: Every string $\mathbf{w} \in \boldsymbol{\Sigma}^{*}$ defines a state $\boldsymbol{\nabla w}=\delta^{*}(\mathbf{s}, \mathbf{w})$.
Definition 6.3.
Two strings $\mathbf{u}, \mathbf{w} \in \mathbf{\Sigma}^{*}$ are distinguishable for \mathbf{M} (or $\mathbf{L}(\mathbf{M})$) if $\boldsymbol{\nabla} \mathbf{u}$ and $\boldsymbol{\nabla} \mathbf{w}$ are distinguishable.

Definition 6.4 (Direct restatement).

Two prefixes $\mathbf{u}, \mathbf{w} \in \boldsymbol{\Sigma}^{*}$ are distinguishable for a language \mathbf{L} if there exists a string \mathbf{x}, such that $\mathbf{u x} \in \mathbf{L}$ and $\mathbf{w} \mathbf{x} \notin \mathbf{L}$ (or $\mathbf{u x} \notin \mathbf{L}$ and $\mathbf{w} \mathbf{x} \in \mathbf{L}$).

Distinguishable means different states

Lemma 6.5.

L: regular language.
$\mathbf{M}=(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{s}, \mathbf{A})$: DFA for \mathbf{L}.
If $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Sigma}^{*}$ are distinguishable, then $\boldsymbol{\nabla} \mathbf{x} \neq \nabla \mathbf{y}$.

Reminder: $\nabla \mathbf{x}=\delta^{*}(\mathbf{s}, \mathbf{x}) \in \mathbf{Q}$ and $\nabla \mathbf{y}=\delta^{*}(\mathbf{s}, \mathbf{y}) \in \mathbf{Q}$

Proof by a figure

Distinguishable strings means different states: Proof

Lemma 6.6.

L: regular language.
$\mathbf{M}=(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{s}, \mathbf{A}):$ DFA for \mathbf{L}.
If $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Sigma}^{*}$ are distinguishable, then $\nabla \mathbf{x} \neq \nabla \mathbf{y}$.

Proof.

Assume for the sake of contradiction that $\nabla \mathbf{x}=\nabla \mathbf{y}$.
By assumption $\exists \mathbf{w} \in \boldsymbol{\Sigma}^{*}$ such that $\boldsymbol{\nabla} \mathbf{x w} \in \mathbf{A}$ and $\nabla \mathbf{y w} \notin \mathbf{A}$.
$\Longrightarrow \mathrm{A} \ni \nabla \mathrm{xw}=\delta^{*}(\mathrm{~s}, \mathrm{xw})=\delta^{*}(\nabla \mathrm{x}, \mathrm{w})=\delta^{*}(\nabla \mathrm{y}, \mathrm{w})$
$=\delta^{*}(\mathrm{~s}, \mathrm{yw})=\nabla \mathrm{yw} \notin \mathrm{A}$.
$\Longrightarrow \mathbf{A} \ni \nabla \mathrm{yw} \notin \mathrm{A}$. Impossible!
Assumption that $\nabla \mathbf{x}=\nabla \mathbf{y}$ is false.

Review questions...

1. Prove for any $\mathbf{i} \neq \mathbf{j}$ then $\mathbf{0}^{\mathbf{i}}$ and $\mathbf{0}^{\mathbf{j}}$ are distinguishable for the language $\left\{0^{\mathrm{k}} \mathbf{1}^{\mathrm{k}} \mid \mathbf{k} \geq \mathbf{0}\right\}$.
2. Let \mathbf{L} be a regular language, and let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathbf{k}}$ be strings that are all pairwise distinguishable for \mathbf{L}. Prove that any DFA for \mathbf{L} must have at least \mathbf{k} states.
3. Prove that $\left\{\mathbf{0}^{\mathbf{k}} \mathbf{1}^{\mathbf{k}} \mid \mathbf{k} \geq \mathbf{0}\right\}$ is not regular.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

6.3
 Fooling sets: Proving non-regularity

Fooling Sets

Definition 6.1.

For a language \mathbf{L} over $\boldsymbol{\Sigma}$ a set of strings \mathbf{F} (could be infinite) is a fooling set or distinguishing set for \mathbf{L} if every two distinct strings $\mathbf{x}, \mathbf{y} \in \mathbf{F}$ are distinguishable.

Example: $\mathbf{F}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i} \geq \mathbf{0}\right\}$ is a fooling set for the language $\mathbf{L}=\left\{\mathbf{0}^{\mathbf{k}} \mathbf{1}^{\mathbf{k}} \mid \mathbf{k} \geq \mathbf{0}\right\}$.

Theorem 6.2.

Suppose \mathbf{F} is a fooling set for \mathbf{L}. If \mathbf{F} is finite then there is no DFA \mathbf{M} that accepts \mathbf{L} with less than $|\mathbf{F}|$ states.

Recall

Already proved the following lemma:

Lemma 6.3.

\mathbf{L} : regular language.
$\mathbf{M}=(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{s}, \mathbf{A})$: DFA for \mathbf{L}.
If $\mathbf{x}, \mathbf{y} \in \mathbf{\Sigma}^{*}$ are distinguishable, then $\boldsymbol{\nabla} \mathbf{x} \neq \nabla \mathbf{y}$.
Reminder: $\boldsymbol{\nabla x}=\boldsymbol{\delta}^{*}(\mathbf{s}, \mathbf{x})$.

Proof of theorem

Theorem 6.4 (Reworded.).

L: A language
\mathbf{F} : a fooling set for \mathbf{L}.
If \mathbf{F} is finite then any DFA \mathbf{M} that accepts \mathbf{L} has at least $|\mathbf{F}|$ states.

```
Proof.
Let F={\mp@subsup{w}{1}{},\mp@subsup{\mathbf{w}}{2}{},\ldots,\mp@subsup{\mathbf{w}}{\mathbf{m}}{})\mathrm{ be the fooling set.}
Let M =(\mathbf{Q},\boldsymbol{\Sigma},\boldsymbol{\delta},\mathbf{s},\mathbf{A})\mathrm{ be any DFA that accepts L}\mathrm{ .}
Let \mp@subsup{q}{i}{}=\nabla\mp@subsup{w}{i}{}=\mp@subsup{\delta}{}{*}(\mathbf{s},\mp@subsup{\textrm{x}}{\textrm{i}}{\prime})
By lemma }\mp@subsup{\mathbf{q}}{\mathbf{i}}{}\not=\mp@subsup{\mathbf{q}}{\mathbf{j}}{\mathrm{ for all i}}\mathbf{i}=\mathbf{j}
As such, }|\mathbf{Q}|\geq|{\mp@subsup{\mathbf{q}}{1}{},\ldots,\mp@subsup{\mathbf{q}}{\mathbf{m}}{}}|=|{\mp@subsup{w}{1}{},\ldots,\mp@subsup{\mathbf{w}}{\mathbf{m}}{}}|=|\mathbf{F}|
```


Infinite Fooling Sets

Corollary 6.5.

If \mathbf{L} has an infinite fooling set \mathbf{F} then \mathbf{L} is not regular.

Proof.

Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots \subseteq \mathbf{F}$ be an infinite sequence of strings such that every pair of them are distinguishable.
Assume for contradiction that $\exists \mathbf{M}$ a DFA for \mathbf{L}.
Let $\mathbf{F}_{\mathbf{i}}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathbf{i}}\right\}$.
By theorem, \# states of $\mathbf{M} \geq\left|\mathbf{F}_{\mathbf{i}}\right|=\mathbf{i}$, for all \mathbf{i}.
As such, number of states in \mathbf{M} is infinite.
Contradiction: $\mathrm{DFA}=$ deterministic finite automata. But M not finite.

Examples

- $\left\{0^{\mathrm{k}} 1^{\mathrm{k}} \mid \mathrm{k} \geq 0\right\}$
- $\{$ bitstrings with equal number of 0 s and 1 s$\}$
- $\left\{0^{\mathrm{k}} \mathbf{1}^{\ell} \mid \mathrm{k} \neq \ell\right\}$

Harder example: The language of squares is not regular $\left\{0^{k^{2}} \mid k \geq 0\right\}$

Really hard: Primes are not regular

An exercise left for your enjoyment

$\left\{\mathbf{0}^{\mathbf{k}} \mid \mathbf{k}\right.$ is a prime number $\}$ Hints:

1. Probably easier to prove directly on the automata.
2. There are infinite number of prime numbers.
3. For every $\mathbf{n}>\mathbf{0}$, observe that $\mathbf{n}!, \mathbf{n}!+\mathbf{1}, \ldots, \mathbf{n}!+\mathbf{n}$ are all composite - there are arbitrarily big gaps between prime numbers.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

6.3.1
 Exponential gap in number of states between DFA and NFA sizes

Exponential gap between NFA and DFA size

$\mathbf{L}_{4}=\left\{\mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid \mathbf{w}\right.$ has a $\mathbf{1}$ located 4 positions from the end $\}$

DFA:

Exponential gap between NFA and DFA size

$\mathbf{L}_{\mathbf{k}}=\left\{\mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid \mathbf{w}\right.$ has a $\mathbf{1} \mathbf{k}$ positions from the end $\}$ Recall that $\mathbf{L}_{\mathbf{k}}$ is accepted by a NFA \mathbf{N} with $\mathbf{k}+\mathbf{1}$ states.
Theorem 6.6.
Every DFA that accepts $\mathbf{L}_{\mathbf{k}}$ has at least $\mathbf{2}^{\mathbf{k}}$ states.
Claim 6.7.
$\mathbf{F}=\left\{\mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{*} \mathbf{:}|\mathbf{w}|=\mathbf{k}\right\}$ is a fooling set of size $\mathbf{2}^{\mathbf{k}}$ for $\mathbf{L}_{\mathbf{k}}$.
Why?

- Suppose $\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{\mathrm{k}}$ and $\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{\mathrm{k}}$ are two distinct bitstrings of length \mathbf{k}
- Let \mathbf{i} be first index where $\mathbf{a}_{\mathbf{i}} \neq \mathbf{b}_{\mathbf{i}}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

How do pick a fooling set

How do we pick a fooling set \mathbf{F} ?

- If \mathbf{x}, \mathbf{y} are in \mathbf{F} and $\mathbf{x} \neq \mathbf{y}$ they should be distinguishable! Of course.
- All strings in \mathbf{F} except maybe one should be prefixes of strings in the language \mathbf{L}. For example if $\mathbf{L}=\left\{0^{\mathbf{k}} \mathbf{1}^{\mathbf{k}} \mid \mathbf{k} \geq \mathbf{0}\right\}$ do not pick $\mathbf{1}$ and $\mathbf{1 0}$ (say). Why?

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

6.4
 Closure properties: Proving non-regularity

Non-regularity via closure properties

$\mathbf{H}=\{$ bitstrings with equal number of 0 s and 1 s$\}$
$H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that \mathbf{L}^{\prime} is non-regular. Can we show that \mathbf{L} is non-regular without using the fooling set argument from scratch?
$\mathbf{H}^{\prime}=\mathbf{H} \cap \mathbf{L}\left(0^{*} \mathbf{1}^{*}\right)$
Claim: The above and the fact that \mathbf{L}^{\prime} is non-regular implies \mathbf{L} is non-regular. Why?
Suppose \mathbf{H} is regular. Then since $\mathbf{L}\left(\mathbf{0}^{*} \mathbf{1}^{*}\right)$ is regular, and regular languages are closed under intersection, \mathbf{H}^{\prime} also would be regular. But we know \mathbf{H}^{\prime} is not regular, a contradiction.

Non-regularity via closure properties

General recipe:

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that \mathbf{L} is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

Intro. Algorithms \& Models of Computation

 CS/ECE 374A, Fall 20226.5
Myhill-Nerode Theorem

One automata to rule them all

"Myhill-Nerode Theorem": A regular language \mathbf{L} has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for \mathbf{L}.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

6.5.1
 Myhill-Nerode Theorem: Equivalence between strings

Indistinguishability

Recall:

Definition 6.1.

For a language \mathbf{L} over $\boldsymbol{\Sigma}$ and two strings $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Sigma}^{*}$ we say that \mathbf{x} and \mathbf{y} are distinguishable with respect to \mathbf{L} if there is a string $\mathbf{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $\mathbf{x w}, \mathbf{y w}$ is in $\mathbf{L} . \mathbf{x}, \mathbf{y}$ are indistinguishable with respect to \mathbf{L} if there is no such \mathbf{w}.

Given language \mathbf{L} over $\boldsymbol{\Sigma}$ define a relation $\equiv \mathbf{L}$ over strings in $\boldsymbol{\Sigma}^{*}$ as follows: $\mathbf{x} \equiv \mathbf{L} \mathbf{y}$ iff \mathbf{x} and \mathbf{y} are indistinguishable with respect to \mathbf{L}.

Definition 6.2.

$\mathbf{x} \equiv \mathbf{L} \mathbf{y}$ means that $\forall \mathbf{w} \in \mathbf{\Sigma}^{*}: \mathbf{x w} \in \mathbf{L} \Longleftrightarrow \mathbf{y w} \in \mathbf{L}$.
In words: \mathbf{x} is equivalent to \mathbf{y} under \mathbf{L}.

Example: Equivalence classes

Indistinguishability

Claim 6.3.

$\equiv \mathrm{L}$ is an equivalence relation over $\boldsymbol{\Sigma}^{*}$.

Proof.

1. Reflexive: $\forall \mathbf{x} \in \mathbf{\Sigma}^{*}: \forall \mathbf{w} \in \mathbf{\Sigma}^{*}: \mathbf{x w} \in \mathbf{L} \Longleftrightarrow \mathbf{x w} \in \mathbf{L} . \Longrightarrow \mathbf{x} \equiv \mathbf{L} \mathbf{x}$.
2. Symmetry: $\mathbf{x} \equiv \mathbf{L} \mathbf{y}$ then $\forall \mathbf{w} \in \boldsymbol{\Sigma}^{*}: \mathbf{x w} \in \mathbf{L} \Longleftrightarrow \mathbf{y w} \in \mathbf{L}$ $\forall \mathbf{w} \in \mathbf{\Sigma}^{*}: \mathbf{y w} \in \mathbf{L} \Longleftrightarrow \mathbf{x w} \in \mathbf{L} \Longrightarrow \mathbf{y} \equiv \mathbf{L} \mathbf{x}$.
3. Transitivity: $\mathbf{x} \equiv \mathbf{L} \mathbf{y}$ and $\mathbf{y} \equiv \mathbf{L} \mathbf{z}$
$\forall \mathbf{w} \in \mathbf{\Sigma}^{*}: \mathbf{x w} \in \mathbf{L} \Longleftrightarrow \mathbf{y w} \in \mathbf{L}$ and $\forall \mathbf{w} \in \mathbf{\Sigma}^{*}: \mathbf{y w} \in \mathbf{L} \Longleftrightarrow \mathbf{z w} \in \mathbf{L}$ $\Longrightarrow \forall \mathbf{w} \in \mathbf{\Sigma}^{*}: \mathbf{x w} \in \mathbf{L} \Longleftrightarrow \mathbf{z w} \in \mathbf{L}$ $\Longrightarrow x \equiv \mathrm{~L}$.

Equivalences over automatas...

Claim 6.4 (Just proved.).

\equiv_{L} is an equivalence relation over $\boldsymbol{\Sigma}^{*}$.
Therefore, \equiv Ł partitions $\boldsymbol{\Sigma}^{*}$ into a collection of equivalence classes.

Definition 6.5.

L: A language For a string $\mathbf{x} \in \mathbf{\Sigma}^{*}$, let

$$
[x]=[x]_{L}=\left\{y \in \Sigma^{*} \mid x \equiv\llcorner y\}\right.
$$

be the equivalence class of \mathbf{x} according to \mathbf{L}.

Definition 6.6.

$[\mathbf{L}]=\left\{[x]_{\mathbf{L}} \mid x \in \mathbf{\Sigma}^{*}\right\}$ is the set of equivalence classes of \mathbf{L}.

Strings in the same equivalence class are indistinguishable

Lemma 6.7.

Let \mathbf{x}, \mathbf{y} be two distinct strings.
$\mathbf{x} \equiv \mathbf{L} \Longleftrightarrow \mathbf{x}, \mathbf{y}$ are indistinguishable for \mathbf{L}.

```
Proof.
x \equiv\mathbf{L}}\mathbf{y}\Longrightarrow\forall\mathbf{w}\in\mp@subsup{\boldsymbol{\Sigma}}{}{*}:\mathbf{xw}\in\mathbf{L}\Longleftrightarrowyw\in\mathbf{L
x}\mathrm{ and }\mathbf{y}\mathrm{ are indistinguishable for L.
x\not=\mathbf{L}y\Longrightarrow\exists\mathbf{y}\in\mp@subsup{\mathbf{\Sigma}}{}{*}:\mathbf{xw}\in\mathbf{L}\mathrm{ and yw &L}
l
```


All strings arriving at a state are in the same class

Lemma 6.8.

$\mathbf{M}=(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{s}, \mathbf{A})$ a DFA for a language \mathbf{L}.
For any $\mathbf{q} \in \mathbf{A}$, let $\mathbf{L}_{\mathbf{q}}=\left\{\mathbf{w} \in \mathbf{\Sigma}^{*} \mid \nabla \mathbf{w}=\delta^{*}(\mathbf{s}, \mathbf{w})=\mathbf{q}\right\}$.
Then, there exists a string \mathbf{x}, such that $\mathbf{L}_{\mathbf{q}} \subseteq[\mathbf{x}]_{\mathbf{L}}$.

An inefficient automata

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

6.5.2
 Stating and proving the Myhill-Nerode

 Theorem
Equivalences over automatas...

Claim 6.9 (Just proved).

Let \mathbf{x}, \mathbf{y} be two distinct strings.
$\mathbf{x} \equiv \mathbf{L} \mathbf{y} \Longleftrightarrow \mathbf{x}, \mathbf{y}$ are indistinguishable for \mathbf{L}.
Corollary 6.10.
If $\equiv \mathbf{L}$ is finite with \mathbf{n} equivalence classes then there is a fooling set \mathbf{F} of size \mathbf{n} for \mathbf{L}.

Corollary 6.11.

If $\equiv \mathrm{L}$ has infinite number of equivalence classes $\Longrightarrow \exists$ infinite fooling set for \mathbf{L}.
$\Longrightarrow \mathbf{L}$ is not regular.

Equivalence classes as automata

Lemma 6.12.

For all $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Sigma}^{*}$, if $[\mathbf{x}]_{\mathrm{L}}=[\mathbf{y}]_{\mathrm{L}}$, then for any $\mathbf{a} \in \boldsymbol{\Sigma}$, we have $[\mathbf{x a}]_{\mathrm{L}}=[\mathbf{y a}]_{\mathrm{L}}$.
Proof.
$[x]=[y] \Longrightarrow \forall \mathbf{w} \in \boldsymbol{\Sigma}^{*}: \mathbf{x w} \in \mathbf{L} \Longleftrightarrow \mathbf{y w} \in \mathbf{L}$
$\Longrightarrow \forall \mathbf{w}^{\prime} \in \boldsymbol{\Sigma}^{*}:$ xaw $^{\prime} \in \mathbf{L} \Longleftrightarrow$ yaw $^{\prime} \in \mathbf{L}$
// w = aw
$\Longrightarrow[x a]_{\llcorner }=[y a]_{\mathrm{L}}$.

Set of equivalence classes

Lemma 6.13.

If \mathbf{L} has \mathbf{n} distinct equivalence classes, then there is a DFA that accepts it using \mathbf{n} states.

```
Proof.
Set of states: Q = [L]
Start state: s = [\varepsilon]_L.
Accept states: A = {[x]| |x\inL}.
Transition function: }\delta([x\mp@subsup{]}{L}{},a)=[xa\mp@subsup{]}{L}{}\mathrm{ .
M=(Q, \Sigma, \delta, s, A): The resulting DFA.
Clearly, M is a DFA with n}\mathrm{ ntates, and it accepts L.
```


Myhill-Nerode Theorem

```
Theorem 6.14 (Myhill-Nerode).
L}\mathrm{ is regular }\Longleftrightarrow\equiv\\ has a finite number of equivalence classes
If}\equiv\textrm{L}\mathrm{ is finite with }\mathbf{n}\mathrm{ equivalence classes then there is a DFA M accepting L exactly \(\mathbf{n}\) states and this is the minimum possible.
```


Corollary 6.15.

A language \mathbf{L} is non-regular if and only if there is an infinite fooling set \mathbf{F} for \mathbf{L}.
Algorithmic implication: For every DFA M one can find in polynomial time a DFA \mathbf{M}^{\prime} such that $\mathbf{L}(\mathbf{M})=\mathbf{L}\left(\mathbf{M}^{\prime}\right)$ and \mathbf{M}^{\prime} has the fewest possible states among all such DFAs.

What was that all about

Summary: A regular language \mathbf{L} has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for \mathbf{L}.

Exercise

1. Given two DFAs $\mathbf{M}_{\mathbf{1}}, \mathbf{M}_{\mathbf{2}}$ describe an efficient algorithm to decide if $L\left(M_{1}\right)=L\left(M_{2}\right)$.
2. Given DFA \mathbf{M}, and two states $\mathbf{q}, \mathbf{q}^{\prime}$ of \mathbf{M}, show an efficient algorithm to decide if \mathbf{q} and \mathbf{q}^{\prime} are distinguishable. (Hint: Use the first part.)
3. Given a DFA \mathbf{M} for a language \mathbf{L}, describe an efficient algorithm for computing the minimal automata (as far as the number of states) that accepts \mathbf{L}.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

6.6
 Roads not taken: Non-regularity via pumping lemma

Non-regularity via "looping"

Claim 6.1.

The language $\mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{0}\right\}$ is not regular.
Proof: Assume for contradiction \mathbf{L} is regular.
$\Longrightarrow \exists \mathrm{DFA} \mathbf{M}=\left(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_{0}, \mathbf{F}\right)$ for \mathbf{L}. That is $\mathbf{L}=\mathbf{L}(\mathbf{M})$.
$\mathbf{n}=|\mathbf{Q}|$: number of states of \mathbf{M}.
Consider the string $\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$. Let $\mathbf{p}_{\tau}=\delta^{*}\left(\mathbf{q}_{0}, \mathbf{a}^{\tau}\right)$, for $\tau=\mathbf{0}, \ldots, \mathbf{n}$.
$\mathbf{p}_{0} \mathbf{p}_{1} \ldots \mathbf{p}_{\mathbf{n}}: \mathbf{n}+\mathbf{1}$ states. \mathbf{M} has \mathbf{n} states.
By pigeon hole principle, must be $\mathbf{i}<\mathbf{j}$, such that $\mathbf{p}_{\mathbf{i}}=\mathbf{p}_{\mathbf{j}}$.
$\Longrightarrow \delta^{*}\left(\mathbf{p}_{\mathbf{i}} \cdot \mathrm{a}^{\mathbf{j}-\mathrm{i}}\right)=\mathbf{p}_{\mathbf{i}}$ (its a loop!).
For $\mathbf{x}=\mathbf{a}^{\mathbf{i}}, \mathbf{y}=\mathbf{a}^{\mathbf{j}-\mathbf{i}}, \mathbf{z}=\mathbf{a}^{\mathbf{n - j} \mathbf{b}^{\mathbf{n}}}$, we have

$$
\delta^{*}\left(\mathbf{q}_{0}, \mathrm{a}^{\mathrm{n}+\mathrm{j}-\mathrm{i}} \mathbf{b}^{\mathrm{n}}\right)=\delta^{*}\left(\mathrm{q}_{0}, \mathrm{xyyz}\right)=\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(\mathbf{q}_{0}, \mathrm{x}\right), \mathrm{y}\right), \mathrm{y}\right), \mathrm{z}\right)
$$

Proof continued

Non-regularity via "looping"

We have: $\mathbf{p}_{\mathbf{i}}=\delta^{*}\left(\mathbf{q}_{0}, \mathrm{a}^{\mathbf{i}}\right)$ and $\delta^{*}\left(\mathbf{p}_{\mathbf{i}} \cdot \mathrm{a}^{\mathbf{j}-}\right)=\mathbf{p}_{\mathbf{i}}$.

$$
\begin{aligned}
\delta^{*}\left(q_{0}, a^{n+j-i} b^{n}\right) & =\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(q_{0}, a^{i}\right), a^{j-i}\right), a^{j-i}\right), a^{n-j} b^{n}\right) \\
& =\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(p_{i}, a^{j-i}\right), a^{j-i}\right), a^{n-j} b^{n}\right)\right. \\
& =\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(q_{0}, a^{i}\right), a^{j-i}\right), a^{n-j} b^{n}\right)\right. \\
& =\delta^{*}\left(\delta^{*}\left(\delta^{*}\left(p_{i}, a^{j-i}\right), a^{n-j} b^{n}\right)\right. \\
& =\delta^{*}\left(q_{0}, a^{n} b^{n}\right) \in A .
\end{aligned}
$$

$\Longrightarrow \mathbf{a}^{\mathbf{n + j}-\mathbf{i}} \mathbf{b}^{\mathbf{n}} \in \mathbf{L}$, which is false. Contradiction. \square

The pumping lemma

The previous argument implies that any regular language must suffer from loops (we omit the proof):

Theorem 6.2 (Pumping Lemma.).

Let \mathbf{L} be a regular language. Then there exists an integer \mathbf{p} (the "pumping length") such that for any string $\mathbf{w} \in \mathbf{L}$ with $|\mathbf{w}| \geq \mathbf{p}, \mathbf{w}$ can be written as $\mathbf{x y z}$ with the following properties:

- $|\mathbf{x y}| \leq \mathbf{p}$.
- $|\mathbf{y}| \geq \mathbf{1}$ (i.e. \mathbf{y} is not the empty string).
- $\mathbf{x y}^{\mathbf{k}} \mathbf{z} \in \mathbf{L}$ for every $\mathbf{k} \geq \mathbf{0}$.

