Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

Regular Languages and Expressions

Lecture 2 Thursday, August 25, 2022

LATEXed: October 13, 2022 14:18

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

2.1 Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- 1. ∅ is a regular language.
- 2. $\{\epsilon\}$ is a regular language.
- 3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- 4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- 5. If L_1 , L_2 are regular then L_1L_2 is regular.
- 6. If **L** is regular, then $L^* = \cup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- 7. If **L** is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- 1. ∅ is a regular language.
- 2. $\{\epsilon\}$ is a regular language.
- 3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- 4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- 5. If L_1 , L_2 are regular then L_1L_2 is regular.
- 6. If **L** is regular, then $L^* = \cup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- 7. If **L** is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- 1. ∅ is a regular language.
- 2. $\{\epsilon\}$ is a regular language.
- 3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- 4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- 5. If L_1 , L_2 are regular then L_1L_2 is regular.
- 6. If **L** is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- 7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- 1. Ø is a regular language.
- 2. $\{\epsilon\}$ is a regular language.
- 3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- 4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- 5. If L_1, L_2 are regular then L_1L_2 is regular.
- 6. If **L** is regular, then $L^* = \cup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- 7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- 1. ∅ is a regular language.
- 2. $\{\epsilon\}$ is a regular language.
- 3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- 4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- 5. If L_1 , L_2 are regular then L_1L_2 is regular.
- 6. If **L** is regular, then $L^* = \cup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- 7. If **L** is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- 1. Ø is a regular language.
- 2. $\{\epsilon\}$ is a regular language.
- 3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- 4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- 5. If L_1, L_2 are regular then L_1L_2 is regular.
- 6. If **L** is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- 7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma 2.1.

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\cup_{i=1}^{\infty} L_i$ is not necessarily regular.

Some simple regular languages

Lemma 2.2.

If **w** is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

.emma 2.3

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

Some simple regular languages

Lemma 2.2.

If **w** is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma 2.3.

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

More Examples

- ► {w | w is a keyword in Python program}
- ► {w | w is a valid date of the form mm/dd/yy}
- {w | w describes a valid Roman numeral} {I, II, III, IV, V, VI, VIII, VIII, IX, X, XI, ...}.
- ► {w | w contains "CS374" as a substring}.

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

2.1.1

Regular Languages: Review questions

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4=\left\{\mathbf{0}^{17i}\mid i=0,1,\ldots,\infty\right\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4=\left\{\mathbf{0}^{17i}\mid i=0,1,\ldots,\infty\right\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most } 374 \text{ 1s} \}$. L_{10} is regular. T/F?

- 1. $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- 2. $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- 4. $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- 5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- 6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- 7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?
- 8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- 9. $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- 10. $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

2.2 Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him.

Inductive Definition

A regular expression \mathbf{r} over an alphabet Σ is one of the following:

Base cases:

- ▶ Ø denotes the language Ø
- ightharpoonup denotes the language $\{\epsilon\}$.
- ▶ a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- ightharpoonup (r_1+r_2) denotes the language $R_1\cup R_2$
- $ightharpoonup (r_1
 ightharpoonup r_2) = r_1
 ightharpoonup r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $ightharpoonup (r_1)^*$ denotes the language R_1^*

Inductive Definition

A regular expression \mathbf{r} over an alphabet Σ is one of the following:

Base cases:

- ▶ Ø denotes the language Ø
- ightharpoonup denotes the language $\{\epsilon\}$.
- ▶ a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- ▶ $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $ightharpoonup (r_1
 ightharpoonup r_2) = r_1
 ightharpoonup r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $ightharpoonup (r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

- For a regular expression \mathbf{r} , $\mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language!

 Example: (0+1) and (1+0) denote same language $\{0,1\}$
- ▶ Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $\mathbf{L}(\mathbf{r}_1) = \mathbf{L}(\mathbf{r}_2)$.
- ► Omit parenthesis by adopting precedence order: *, concatenate, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- ▶ Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- ightharpoonup Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! Example: (0 + 1) and (1 + 0) denote same language $\{0, 1\}$
- ▶ Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $\mathbf{L}(\mathbf{r}_1) = \mathbf{L}(\mathbf{r}_2)$.
- ► Omit parenthesis by adopting precedence order: *, concatenate, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- ▶ Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- ightharpoonup Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression **r**, **L**(**r**) is the language denoted by **r**. Multiple regular expressions can denote the same language!
- **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- ▶ Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $\mathbf{L}(\mathbf{r}_1) = \mathbf{L}(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- ▶ Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- ightharpoonup Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression \mathbf{r} , $\mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- ▶ Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $\mathbf{L}(\mathbf{r}_1) = \mathbf{L}(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- ▶ Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- ightharpoonup Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- ► For a regular expression **r**, **L**(**r**) is the language denoted by **r**. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- ▶ Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $\mathbf{L}(\mathbf{r}_1) = \mathbf{L}(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- ▶ Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- ightharpoonup Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression **r**, **L**(**r**) is the language denoted by **r**. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- ▶ Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $\mathbf{L}(\mathbf{r}_1) = \mathbf{L}(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- ▶ Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- ▶ Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

Skills

- ▶ Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- ▶ Given a regular expression r we would like to "understand" L(r) (say by giving an English description)

Skills

- ▶ Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- ightharpoonup Given a regular expression ightharpoonup r we would like to "understand" ightharpoonup L(r) (say by giving an English description)

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

2.2.1

Some examples of regular expressions

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- **▶** ∅0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- **▶** ∅0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- \triangleright 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- **▶** ∅0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- **▶** ∅0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- **▶** ∅0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- \triangleright 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- **▶** Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- **▶** Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $\mathbf{0}^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- **▶** Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- **▶** Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $\mathbf{0}^* + (\mathbf{0}^*\mathbf{10}^*\mathbf{10}^*\mathbf{10}^*)^*$: strings with number of 1's divisible by 3
- **▶** Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- \triangleright $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- **▶** Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating **0**s and **1**s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- ▶ bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- ► Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain **011** as a substring
- ► Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- ▶ bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- ▶ bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain **011** as a substring
- ► Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- ▶ bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- ► Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- ► Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- ▶ bitstrings that do not contain **011** as a substring
- ► Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain **011** as a substring
- ► Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain **011** as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

Bit strings with odd number of $\mathbf{0}$ s and $\mathbf{1}$ s

The regular expression is

$$ig(00+11ig)^*(01+10ig) \ ig(00+11+(01+10)(00+11)^*(01+10)ig)^*$$

(Solved using techniques to be presented in the following lectures...)

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
 (r*)* = r*
 rr* = r*r
 (rs)*r = r(sr)*
 (r+s)* = (r*s*)* = (r*+s*)* = (r+s*)* = ...
- **Question:** How does on prove an identity? By induction. On what? Length of **r** since **r** is a string obtained from specific inductive rules.

- $ightharpoonup r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $ightharpoonup rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $ightharpoonup (r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

By induction. On what? Length of \mathbf{r} since \mathbf{r} is a string obtained from specific inductive rules.

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
 (r*)* = r*
- ► rr* = r*r
- $(rs)^*r = r(sr)^*$
- $ightharpoonup (r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.

- $ightharpoonup r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $ightharpoonup rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r + s)^* = (r^*s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \dots$

Question: How does on prove an identity?

By induction. On what? Length of \mathbf{r} since \mathbf{r} is a string obtained from specific inductive rules.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

2.2.2

An example of a non-regular language

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

$$L = \{0^n1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$$

The language L is not a regular language.

How do we prove it?

- ▶ Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is $\overline{R_1}$ (complement of R_1) regular?

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem 2.1.

$$L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

The language L is **not** a regular language.

How do we prove it?

- ▶ Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- ▶ Suppose R_1 is regular is $\overline{R_1}$ (complement of R_1) regular?

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem 2.1.

$$L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

The language L is **not** a regular language.

How do we prove it?

- ▶ Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- ▶ Suppose R_1 is regular is R_1 (complement of R_1) regular?

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem 2.1.

$$L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

The language L is **not** a regular language.

How do we prove it?

- ▶ Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- ▶ Suppose R_1 is regular is R_1 (complement of R_1) regular?

A sketchy proof

Theorem 2.2.

 $\mathsf{L} = \{ \mathsf{0}^\mathsf{n} \mathsf{1}^\mathsf{n} \mid \mathsf{n} \geq \mathsf{0} \} = \{ \epsilon, \mathsf{01}, \mathsf{0011}, \mathsf{000111}, \ldots \}.$

The language L is **not** a regular language.