Intro. Algorithms & Models of Computation

Regular Languages and Expressions

Lecture 2
Thursday, August 25, 2022

ATEXed: October 13, 2022 14:18

1/23

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

2.1
Regular Languages

2/23

Regular Languages
A class of simple but useful languages.
The set of regular languages over some alphabet X is defined inductively as:
1. 0@ is a regular language.
2. {€} is a regular language.
3. {a} is a regular language for each a € X. Interpreting a as string of length 1.

3/23

Regular Languages
A class of simple but useful languages.
The set of regular languages over some alphabet X is defined inductively as:
1. 0@ is a regular language.
2. {€} is a regular language.
3. {a} is a regular language for each a € X. Interpreting a as string of length 1.
4. If Ly, Ly are regular then Ly U L, is regular.

3/23

Regular Languages
A class of simple but useful languages.
The set of regular languages over some alphabet X is defined inductively as:
1. 0@ is a regular language.
2. {€} is a regular language.
3. {a} is a regular language for each a € X. Interpreting a as string of length 1.
4. If Ly, Ly are regular then Ly U L, is regular.
5. If Ly, Ly are regular then LiL, is regular.

3/23

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet X is defined inductively as:

1. 0@ is a regular language.

{€} is a regular language.

{a} is a regular language for each a € X. Interpreting a as string of length 1.
If Ly, Ly are regular then Ly U L; is regular.

If Ly, L are regular then LiL; is regular.

A S

If L is regular, then L* = Up>oL" is regular.
The -* operator name is Kleene star.

3/23

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet X is defined inductively as:

1. 0@ is a regular language.

{€} is a regular language.

{a} is a regular language for each a € X. Interpreting a as string of length 1.
If Ly, Ly are regular then Ly U L; is regular.

If Ly, L are regular then LiL; is regular.

A S

If L is regular, then L* = Up>oL" is regular.
The -* operator name is Kleene star.

7. If L is regular, then sois L = X* \ L.

3/23

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet X is defined inductively as:

1. 0@ is a regular language.

{€} is a regular language.

{a} is a regular language for each a € X. Interpreting a as string of length 1.
If Ly, Ly are regular then Ly U L; is regular.

If Ly, L are regular then LiL; is regular.

A S

If L is regular, then L* = Up>oL" is regular.
The -* operator name is Kleene star.

7. If L is regular, then sois L = X* \ L.

Regular languages are closed under operations of union, concatenation and Kleene star.

3/23

Regular Languages

Have basic operations to build regular languages.
Important: Any language generated by a finite sequence of such operations is
regular.

Lemma 2.1.

Let Ly, Lo, ..., be regular languages over alphabet . Then the language U2, L; is not
necessarily regular.

4/23

Some simple regular languages

Lemma 2.2. J

If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

5/23

Some simple regular languages

Lemma 2.2.
If w is a string then L = {w} is regular. ‘

Example: {aba} or {abbabbab}. Why?

Every finite language L is regular. l

Examples: L = {a, abaab, aba}. L = {w | |w| < 100}. Why?

5/23

More Examples

» {w | wis a keyword in Python program}
» {w | wis a valid date of the form mm/dd/yy}
» {w | w describes a valid Roman numeral}

{1, 1, 11,1V, V, VI, VIL, VL X, X, X1, . . .}

» {w | w contains "CS374" as a substring}.

6/23

Review questions

L; C {0,1}* be a finite language. L; is a set with finite number of strings. T/F?
L, = {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?

L; = {0 |i=0,1,...,00}. The language Lj is regular. T/F?

Ly = {017i ’ i=0,1,..., oo} The language Ly is regular. T/F?

= {0' | i is not divisible by 17}. Ls is regular. T/F?

Le = {0' | iis divisible by 2,3,0r 5}. Lg is regular. T/F?

L; = {Oi ‘ i is divisible by 2, 3, and 5}. L7 is regular. T/F?

Lg = {0' | i is divisible by 2,3, but not 5}. Lg is regular. T/F?

Ly = {Oili ‘ i is divisible by 2, 3, but not 5}. Lo is regular. T/F?

Lio = {w € {0,1}* | w has at most 374 1s}. Lyq is regular. T/F?

© 0N o gk w =
(o
(5]

._.
©

7/23

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

2.1.1

Regular Languages: Review questions

8/23

Review questions

1. Ly € {0,1}* be a finite language. L; is a set with finite number of strings. T/F?

9/23

Review questions

1. Ly € {0,1}* be a finite language. L; is a set with finite number of strings. T/F?
2. Ly = {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?

9/23

Review questions

1. Ly € {0,1}* be a finite language. L; is a set with finite number of strings. T/F?
2. Ly = {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?
3.L3={0"]i=0,1,...,00}. The language Ls is regular. T/F?

9/23

Review questions

1. Ly € {0,1}* be a finite language. L; is a set with finite number of strings. T/F?
2. Ly = {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?
3.L3={0"]i=0,1,...,00}. The language Ls is regular. T/F?

4. Ly = {017i ’ i=0,1,..., oo} The language L4 is regular. T/F?

9/23

Review questions

oA W=

L; C {0,1}* be a finite language. L; is a set with finite number of strings. T/F?

L, = {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?
L; = {0 |i=0,1,...,00}. The language Lj is regular. T/F?
Ly = {017i ’ i=0,1,..., oo} The language L4 is regular. T/F?
Ls = {Oi ‘ i is not divisible by 17}. Ls is regular. T/F?

9/23

Review questions

L; C {0,1}* be a finite language. L; is a set with finite number of strings. T/F?
L, = {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?

L; = {0 |i=0,1,...,00}. The language Lj is regular. T/F?

Ly = {017i ’ i=0,1,..., oo} The language L4 is regular. T/F?

Ls = {Oi ‘ i is not divisible by 17}. Ls is regular. T/F?

Le = {0' | iis divisible by 2,3,0r 5}. Lg is regular. T/F?

© A w =

9/23

Review questions

A -

L; C {0,1}* be a finite language. L; is a set with finite number of strings. T/F?

L,
L3
Ls

= {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?
= {02i | i=0,1,..., oo} The language L3 is regular. T/F?
= {017i ’ i=0,1,..., oo} The language L4 is regular. T/F?
= {0' | i is not divisible by 17}. Ls is regular. T/F?

= {0i ‘ i is divisible by 2, 3, or 5}. Le is regular. T/F?

= {Oi ‘ i is divisible by 2, 3, and 5}. L7 is regular. T/F?

9/23

Review questions

e A

L; C {0,1}* be a finite language. L; is a set with finite number of strings. T/F?

L,
L3
Ls

= {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?
= {02i | i=0,1,..., oo} The language L3 is regular. T/F?
= {017i ’ i=0,1,..., oo} The language L4 is regular. T/F?
= {0' | i is not divisible by 17}. Ls is regular. T/F?

= {0i ‘ i is divisible by 2, 3, or 5}. Le is regular. T/F?

= {Oi ‘ i is divisible by 2, 3, and 5}. L7 is regular. T/F?

= {0i ‘ i is divisible by 2, 3, but not 5}. Lg is regular. T/F?

9/23

Review questions

© 0N o gk w =

L; C {0,1}* be a finite language. L; is a set with finite number of strings. T/F?

L,
L3
Ls

= {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?
= {02i | i=0,1,..., oo} The language L3 is regular. T/F?
= {017i ’ i=0,1,..., oo} The language L4 is regular. T/F?
= {0' | i is not divisible by 17}. Ls is regular. T/F?

= {0i ‘ i is divisible by 2, 3, or 5}. Le is regular. T/F?

= {Oi ‘ i is divisible by 2, 3, and 5}. L7 is regular. T/F?

= {0i ‘ i is divisible by 2, 3, but not 5}. Lg is regular. T/F?

= {Oili ‘ i is divisible by 2, 3, but not 5}. Lo is regular. T/F?

9/23

Review questions

L; C {0,1}* be a finite language. L; is a set with finite number of strings. T/F?
L, = {Oi ‘ i=0,1,..., oo} The language L; is regular. T/F?

L; = {0 |i=0,1,...,00}. The language Lj is regular. T/F?

Ly = {017i ’ i=0,1,..., oo} The language L4 is regular. T/F?

= {0' | i is not divisible by 17}. Ls is regular. T/F?

Le = {0' | iis divisible by 2,3,0r 5}. Lg is regular. T/F?

L; = {Oi ‘ i is divisible by 2, 3, and 5}. L7 is regular. T/F?

Lg = {0' | i is divisible by 2,3, but not 5}. Lg is regular. T/F?

Ly = {Oili ‘ i is divisible by 2, 3, but not 5}. Lo is regular. T/F?

Lio = {w € {0,1}* | w has at most 374 1s}. Lyq is regular. T/F?

© 0N o gk w =
(o
(5]

._.
©

9/23

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

2.2

Regular Expressions

10/23

Regular Expressions

A way to denote regular languages
» simple patterns to describe related strings
» useful in
> text search (editors, Unix/grep, emacs)
P compilers: lexical analysis
> compact way to represent interesting/useful languages
>

dates back to 50's: Stephen Kleene
who has a star names after him.

11/23

Inductive Definition
A regular expression r over an alphabet X is one of the following:
Base cases:

» () denotes the language 0

> ¢ denotes the language {€}.

» a denote the language {a}.

12/23

Inductive Definition
A regular expression r over an alphabet X is one of the following:
Base cases:

» () denotes the language 0

> ¢ denotes the language {€}.

» a denote the language {a}.

Inductive cases: If r; and r, are regular expressions denoting languages R; and R;
respectively then,

» (r; + rp) denotes the language Ry U R;

» (riery) = ryery = (riry) denotes the language RiR;
» (r1)* denotes the language R}

12/23

Regular Languages vs Regular Expressions

Regular Languages

0 regular

{e} regular

{a} regular fora € ©

R; U R; regular if both are
R;R; regular if both are
R* is regular if R is

Regular Expressions

(denotes @

€ denotes {€}

a denote {a}

r1 + ro denotes R; U R,
rier, denotes R1R»

r* denote R*

Regular expressions denote regular languages — they explicitly show the operations that

were used to form the language

13/23

Notation and Parenthesis

» For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0,1}

14/23

Notation and Parenthesis

» For a regular expression r, L(r) is the language denoted by r. Multiple regular

expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0,1}

» Two regular expressions ry and ry are equivalent if L(r;) = L(rz).

14/23

Notation and Parenthesis

» For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0,1}

» Two regular expressions ry and r; are equivalent if L(r1) = L(r2).

» Omit parenthesis by adopting precedence order: *, concatenate, +.
Example: r*'s +t = ((r*)s) + t

14/23

Notation and Parenthesis

» For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0,1}

» Two regular expressions ry and r; are equivalent if L(r1) = L(r2).

» Omit parenthesis by adopting precedence order: *, concatenate, +.
Example: r*'s +t = ((r*)s) + t

» Omit parenthesis by associativity of each of these operations.

Example: rst = (rs)t =r(st), r+s+t=r+ (s+t) =(r+s) +t

14/23

Notation and Parenthesis

>

v

For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!

Example: (0 + 1) and (1 + 0) denote same language {0,1}

Two regular expressions r; and r, are equivalent if L(r;) = L(r2).

Omit parenthesis by adopting precedence order: *, concatenate, +.
Example: r*'s +t = ((r*)s) + t

Omit parenthesis by associativity of each of these operations.

Example: rst = (rs)t =r(st), r+s+t=r+ (s+t) =(r+s) +t
Superscript +. For convenience, define rt = rr*. Hence if L(r) = R then
L(rt) = R*.

14/23

Notation and Parenthesis

>

v

For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!

Example: (0 + 1) and (1 + 0) denote same language {0,1}

Two regular expressions r; and r, are equivalent if L(r;) = L(r2).

Omit parenthesis by adopting precedence order: *, concatenate, +.
Example: r*'s +t = ((r*)s) + t

Omit parenthesis by associativity of each of these operations.

Example: rst = (rs)t =r(st), r+s+t=r+ (s+t) =(r+s) +t
Superscript +. For convenience, define rt = rr*. Hence if L(r) = R then
L(rt) = R*.

Other notation: r 4+ s, r Us, r|s all denote union. rs is sometimes written as res.

14/23

Skills

» Given a language L “in mind” (say an English description) we would like to write a
regular expression for L (if possible)

15/23

Skills

» Given a language L “in mind” (say an English description) we would like to write a
regular expression for L (if possible)

» Given a regular expression r we would like to “understand” L(r) (say by giving an
English description)

15/23

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

2.2.1

Some examples of regular expressions

16/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}
>

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}
> (04 1)*001(0 + 1)*:

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}
> (0 + 1)*001(0 + 1)*: strings with 001 as substring
>

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}
> (0 + 1)*001(0 + 1)*: strings with 001 as substring
> 0* + (0*10*10*10*)*:

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}

> (0 + 1)*001(0 + 1)*: strings with 001 as substring

» 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
>

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}

> (0 + 1)*001(0 + 1)*: strings with 001 as substring

» 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
> (0:

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}

> (0 + 1)*001(0 + 1)*: strings with 001 as substring

» 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
> 00: {}

>

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}

> (0 + 1)*001(0 + 1)*: strings with 001 as substring

» 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
> 00: {}

> (e +1)(01)*(e + 0):

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}

> (0 + 1)*001(0 + 1)*: strings with 001 as substring

» 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
> 00: {}

> (e +1)(01)*(e + 0): alternating Os and 1s. Alternatively, no two consecutive Os
and no two consecutive 1s

>

17/23

Understanding regular expressions

» (04 1)*: set of all strings over {0,1}

> (0 + 1)*001(0 + 1)*: strings with 001 as substring

» 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
> 00: {}

> (e +1)(01)*(e + 0): alternating Os and 1s. Alternatively, no two consecutive Os
and no two consecutive 1s

> (e +0)(1 + 10)*:

17/23

Understanding regular expressions

» (0 + 1)*: set of all strings over {0,1}

> (0 + 1)*001(0 + 1)*: strings with 001 as substring

» 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
> 00: {}

> (e +1)(01)*(e + 0): alternating Os and 1s. Alternatively, no two consecutive Os
and no two consecutive 1s

» (e + 0)(1 4+ 10)*: strings without two consecutive Os.

17/23

Creating regular expressions

» bitstrings with the pattern 001 or the pattern 100 occurring as a substring

18/23

Creating regular expressions

» bitstrings with the pattern 001 or the pattern 100 occurring as a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
>

18/23

Creating regular expressions

» bitstrings with the pattern 001 or the pattern 100 occurring as a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

» bitstrings with an even number of 1's

18/23

Creating regular expressions
» bitstrings with the pattern 001 or the pattern 100 occurring as a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
» bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*
»

18/23

Creating regular expressions

» bitstrings with the pattern 001 or the pattern 100 occurring as a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

» bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*

» bitstrings with an odd number of 1's

18/23

Creating regular expressions

» bitstrings with the pattern 001 or the pattern 100 occurring as a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

» bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*

» bitstrings with an odd number of 1's
one answer: 0*1r where r is solution to previous part

| 2

18/23

Creating regular expressions

» bitstrings with the pattern 001 or the pattern 100 occurring as a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

» bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*

» bitstrings with an odd number of 1's
one answer: 0*1r where r is solution to previous part

v

bitstrings that do not contain 011 as a substring

18/23

Creating regular expressions

>

>

v

bitstrings with the pattern 001 or the pattern 100 occurring as a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

bitstrings with an even number of 1's

one answer: 0* + (0*10*10*)*

bitstrings with an odd number of 1's

one answer: 0*1r where r is solution to previous part

bitstrings that do not contain 011 as a substring

Hard: bitstrings with an odd number of 1s and an odd number of Os.

18/23

Bit strings with odd number of Qs and 1s

The regular expression is

(00 + 11)"(01 + 10)
(00 + 11 +(01 + 10)(00 + 11)*(01 + 10)>*

(Solved using techniques to be presented in the following lectures...)

19/23

Regular expression identities

» r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
> (r*)* = r*

> orrt =r'r

» (rs)*r = r(sr)*

> (r+s)=(s) =@ +s) =(F+s)=...

20/23

Regular expression identities

» r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
> (r*)* = r*

> orrt =r'r

» (rs)*r = r(sr)*

> (r+s)=(s) =@ +s) =(F+s)=...

Question: How does on prove an identity?

20/23

Regular expression identities

» r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
> (r*)* = r*

> orrt =r'r

» (rs)*r = r(sr)*

> (r+s)=(s) =@ +s) =(F+s)=...

Question: How does on prove an identity?
By induction. On what?

20/23

Regular expression identities

» r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
> (r*)* = r*

> orrt =r'r

» (rs)*r = r(sr)*

> (r+s)=(s) =@ +s) =(F+s)=...

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive
rules.

20/23

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

2.2.2

An example of a non-regular language

21/23

A non-regular language and other closure properties
Consider L = {0"1" | n > 0} = {¢, 01,0011,000111,...}.

22/23

A non-regular language and other closure properties
Consider L = {0"1" | n > 0} = {¢,01,0011,000111,...}.

L= {0"1" | n > 0} = {¢,01,0011,000111,...}.
The language L is not a regular language.

22/23

A non-regular language and other closure properties
Consider L = {0"1" | n > 0} = {¢,01,0011,000111,...}.

L= {0"1" | n > 0} = {¢,01,0011,000111,...}.
The language L is not a regular language.

How do we prove it?

22/23

A non-regular language and other closure properties
Consider L = {0"1" | n > 0} = {¢,01,0011,000111,...}.

L= {0"1" | n > 0} = {¢,01,0011,000111,...}.
The language L is not a regular language.

How do we prove it?

Other questions:
» Suppose Rj is regular and R; is regular. Is Ry N R, regular?
» Suppose R is regular is Ry (complement of R;) regular?

22/23

A sketchy proof

L= {0"1" | n > 0} = {¢01,0011,000111,...}.
The language L is not a regular language.

23/23

	Regular Languages
	Regular Languages: Review questions

	Regular Expressions
	Some examples of regular expressions
	An example of a non-regular language

