Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022

Regular Languages and Expressions

Lecture 2
Thursday, August 25, 2022

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022
2.1

Regular Languages

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{\mathbf{a}\}$ is a regular language for each $\mathbf{a} \in \boldsymbol{\Sigma}$. Interpreting \mathbf{a} as string of length $\mathbf{1}$.
4. If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
5. If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular
6. If \mathbf{L} is regular, then $\mathbf{L}^{*}=\cup_{n>0} \mathbf{L}^{n}$ is regular The •* operator name is Kleene star
7. If \mathbf{L} is regular, then so is $\mathbf{L}=\boldsymbol{\Sigma}^{*} \backslash \mathbf{L}$.

Regular languages are closed under operations of union, concatenation and Kleene star

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{\mathbf{a}\}$ is a regular language for each $\mathbf{a} \in \boldsymbol{\Sigma}$. Interpreting \mathbf{a} as string of length $\mathbf{1}$.
4. If $\mathbf{L}_{1}, \mathbf{L}_{2}$ are regular then $\mathbf{L}_{1} \cup \mathbf{L}_{2}$ is regular.
5. If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
6. If \mathbf{L} is regular, then $\mathbf{L}^{*}=\cup_{n>0} \mathbf{L}^{n}$ is regular The •* operator name is Kleene star
7. If L is regular, then so is $\overline{\mathrm{L}}=\boldsymbol{\Sigma}^{*} \backslash \mathrm{~L}$.

Regular languages are closed under operations of union, concatenation and Kleene star

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{\mathbf{a}\}$ is a regular language for each $\mathbf{a} \in \boldsymbol{\Sigma}$. Interpreting \mathbf{a} as string of length $\mathbf{1}$.
4. If $\mathbf{L}_{1}, \mathbf{L}_{2}$ are regular then $\mathbf{L}_{1} \cup \mathbf{L}_{2}$ is regular.
5. If $\mathbf{L}_{1}, \mathbf{L}_{2}$ are regular then $\mathbf{L}_{1} \mathbf{L}_{2}$ is regular.
6. If L is regular, then $L^{*}=\cup_{n>0} L^{n}$ is regular The •* operator name is Kleene star $^{\text {a }}$
7. If L is regular, then so is $\bar{I}=\Sigma^{*} \backslash \mathbf{L}$

Regular languages are closed under operations of union, concatenation and Kleene star

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{\mathbf{a}\}$ is a regular language for each $\mathbf{a} \in \boldsymbol{\Sigma}$. Interpreting \mathbf{a} as string of length $\mathbf{1}$.
4. If $\mathbf{L}_{1}, \mathbf{L}_{2}$ are regular then $\mathbf{L}_{\mathbf{1}} \cup \mathbf{L}_{2}$ is regular.
5. If $\mathbf{L}_{1}, \mathbf{L}_{2}$ are regular then $\mathbf{L}_{1} \mathbf{L}_{2}$ is regular.
6. If \mathbf{L} is regular, then $\mathbf{L}^{*}=\cup_{n \geq 0} \mathbf{L}^{\mathbf{n}}$ is regular.

The •* operator name is Kleene star.
7. If L is regular, then so is $\overline{\mathrm{L}}=\boldsymbol{\Sigma}^{*} \backslash \mathbf{L}$.

Regular languages are closed under operations of union, concatenation and Kleene star

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{\mathbf{a}\}$ is a regular language for each $\mathbf{a} \in \boldsymbol{\Sigma}$. Interpreting \mathbf{a} as string of length $\mathbf{1}$.
4. If $\mathbf{L}_{1}, \mathbf{L}_{2}$ are regular then $\mathbf{L}_{1} \cup \mathbf{L}_{2}$ is regular.
5. If $\mathbf{L}_{1}, \mathbf{L}_{2}$ are regular then $\mathbf{L}_{1} \mathbf{L}_{2}$ is regular.
6. If \mathbf{L} is regular, then $\mathbf{L}^{*}=\cup_{n \geq 0} \mathbf{L}^{\mathbf{n}}$ is regular.

The •* operator name is Kleene star.
7. If \mathbf{L} is regular, then so is $\overline{\mathbf{L}}=\boldsymbol{\Sigma}^{*} \backslash \mathbf{L}$.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{\mathbf{a}\}$ is a regular language for each $\mathbf{a} \in \boldsymbol{\Sigma}$. Interpreting \mathbf{a} as string of length $\mathbf{1}$.
4. If $\mathbf{L}_{1}, \mathbf{L}_{\mathbf{2}}$ are regular then $\mathbf{L}_{\mathbf{1}} \cup \mathbf{L}_{\mathbf{2}}$ is regular.
5. If $\mathbf{L}_{1}, \mathbf{L}_{2}$ are regular then $\mathbf{L}_{1} \mathbf{L}_{2}$ is regular.
6. If \mathbf{L} is regular, then $\mathbf{L}^{*}=\cup_{n \geq 0} \mathbf{L}^{\mathbf{n}}$ is regular.

The •* operator name is Kleene star.
7. If \mathbf{L} is regular, then so is $\overline{\mathbf{L}}=\boldsymbol{\Sigma}^{*} \backslash \mathbf{L}$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

Have basic operations to build regular languages.
Important: Any language generated by a finite sequence of such operations is regular.
Lemma 2.1.
Let $\mathbf{L}_{1}, \mathbf{L}_{2}, \ldots$, be regular languages over alphabet $\boldsymbol{\Sigma}$. Then the language $\cup_{i=1}^{\infty} \mathbf{L}_{\mathbf{i}}$ is not necessarily regular.

Some simple regular languages

Lemma 2.2.

If \mathbf{w} is a string then $\mathbf{L}=\{\mathbf{w}\}$ is regular.
Example: \{aba\} or \{abbabbab\}. Why?

Every finite language \mathbf{L} is regular.
Examples: $\mathrm{L}=\left\{\mathrm{a}, \mathrm{ab} \mathbf{a b}^{\mathbf{b}}, \mathrm{ab}, \mathrm{L}\right\} . \mathrm{L}=\{w| | w \mid \leq 100\}$. Why?

Some simple regular languages

```
Lemma 2.2.
If w is a string then \mathbf{L}={\mathbf{w}} is regular.
```

Example: \{aba\} or \{abbabbab\}. Why?

Every finite language \mathbf{L} is regular.
Examples: $\mathbf{L}=\{\mathbf{a}, \mathbf{a b a a b}, \mathbf{a b a}\} . \mathbf{L}=\{\mathbf{w}| | \mathbf{w} \mid \leq \mathbf{1 0 0}\}$. Why?

More Examples

- $\{\mathbf{w} \mid \mathbf{w}$ is a keyword in Python program $\}$
- $\{\mathbf{w} \mid \mathbf{w}$ is a valid date of the form $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}\}$
- $\{\mathbf{w} \mid \mathbf{w}$ describes a valid Roman numeral $\}$
$\{\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV}, \mathrm{V}, \mathrm{VI}, \mathrm{VII}, \mathrm{VIII}, \mathrm{IX}, \mathrm{X}, \mathrm{XI}, \ldots\}$.
- $\{\mathbf{w} \mid \mathbf{w}$ contains "CS374" as a substring $\}$.

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T / F ?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{0^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathbf{L}_{\mathbf{5}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is not divisible by $\left.\mathbf{1 7}\right\} . \mathbf{L}_{5}$ is regular. T/F?
6. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, or $\left.\mathbf{5}\right\}$. \mathbf{L}_{6} is regular. T / F ?
7. $\mathbf{L}_{\mathbf{7}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, and $\left.\mathbf{5}\right\}$. $\mathbf{L}_{\mathbf{7}}$ is regular. T / F ?
8. $\mathbf{L}_{8}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{8} is regular. T / F ?
9. $\mathbf{L}_{9}=\left\{0^{\mathbf{i}} \mathbf{1}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{9} is regular. T / F ?
10. $\mathbf{L}_{10}=\left\{\mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid \mathbf{w}\right.$ has at most $\left.374 \mathbf{1 s}\right\}$. \mathbf{L}_{10} is regular. T / F ?

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022
2.1.1

Regular Languages: Review questions

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathrm{L}_{2}=\left\{0^{i} \mid \mathrm{i}=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T / F ?
3. $\mathbf{L}_{3}=\left\{0^{2 \mathbf{i}} \mid \mathbf{i}=0,1, \ldots, \infty\right\}$. The language \mathbf{L}_{3} is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{\mathbf{0}^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathrm{L}_{5}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is not divisible by 17$\} . \mathrm{L}_{5}$ is regular. T / F ?
6. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , or $\left.\mathbf{5}\right\}$. \mathbf{L}_{6} is regular. T / F ?
7. $\mathbf{L}_{7}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , and $\left.\mathbf{5}\right\}$. \mathbf{L}_{7} is regular. T / F ?
8. $L_{8}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T / F ?
9. $L_{9}=\left\{0^{i} 1^{i} \mid \mathbf{i}\right.$ is divisible by 2,3 , but not 5$\}$. L_{9} is regular. T / F ?
10. $\mathbf{L}_{10}=\left\{\mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid \mathbf{w}\right.$ has at most $\left.374 \mathbf{1 s}\right\}$. \mathbf{L}_{10} is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T / F ?
3. $L_{3}=\left\{0^{2 i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{0^{17 i} \mid \mathbf{i}=0,1, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathbf{L}_{5}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is not divisible by $\left.\mathbf{1 7}\right\}$. \mathbf{L}_{5} is regular. T / F ?
6. $\mathrm{L}_{6}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , or $\left.\mathbf{5}\right\}$. L_{6} is regular. T / F ?
7. $\mathbf{L}_{7}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , and $\left.\mathbf{5}\right\}$. \mathbf{L}_{7} is regular. T / F ?
8. $\mathrm{L}_{8}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , but not $\left.\mathbf{5}\right\}$. L_{8} is regular. T / F ?
9. $\mathrm{L}_{9}=\left\{0^{\mathrm{i}} 1^{\mathrm{i}} \mid \mathrm{i}\right.$ is divisible by 2,3 , but not 5$\}$. L_{9} is regular. T / F ?
10. $\mathbf{L}_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most $\left.374 \mathbf{1 s}\right\} . \mathrm{L}_{10}$ is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T / F ?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{5}=\{\mathbf{0} \mid \mathbf{i}$ is not divisible by $\mathbf{1 7}\}$. \mathbf{L}_{5} is regular. T / F ?
5. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, or $\left.\mathbf{5}\right\}$. \mathbf{L}_{6} is regular. T / F ?
6. $\mathrm{L}_{7}=\left\{0^{i} \mid \mathrm{i}\right.$ is divisible by 2,3 , and 5$\}$. L_{7} is regular. T / F ?
7. $\mathbf{L}_{8}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{8} is regular. T / F ?
8. $\mathbf{L}_{9}=\left\{0^{\mathbf{i}} 1^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , but not 5$\}$. \mathbf{L}_{9} is regular. T / F ?
9. $\mathrm{L}_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 374 ls$\}$. L_{10} is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T/F?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{\mathbf{0}^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathrm{L}_{5}=\left\{0^{\mathbf{i}} \mid \mathrm{i}\right.$ is not divisible by 17$\}$. L_{5} is regular. T / F ?
6. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, or $\left.\mathbf{5}\right\}$. \mathbf{L}_{6} is regular. T / F ?
7. $\mathbf{L}_{7}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, and $\left.\mathbf{5}\right\}$. \mathbf{L}_{7} is regular. T / F ?
8. $\mathrm{L}_{8}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , but not 5$\}$. L_{8} is regular. T / F ?
9. $\mathbf{L}_{9}=\left\{0^{\mathbf{i}} 1^{\mathbf{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{9} is regular. T / F ?
10. $\mathbf{L}_{10}=\left\{\mathbf{w} \in\{0,1\}^{*} \mid w\right.$ has at most $\left.374 \mathbf{1 s}\right\} . \mathbf{L}_{10}$ is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T/F?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{\mathbf{0}^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathbf{L}_{\mathbf{5}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is not divisible by $\left.\mathbf{1 7}\right\} . \mathbf{L}_{\mathbf{5}}$ is regular. T/F?
6. $\mathrm{L}_{6}=\left\{0^{i} \mid \mathrm{i}\right.$ is divisible by 2,3 , or 5$\}$. L_{6} is regular. T / F ?
7. $\mathbf{L}_{7}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, and $\left.\mathbf{5}\right\}$. \mathbf{L}_{7} is regular. T / F ?
8. $\mathrm{L}_{8}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , but not $\left.\mathbf{5}\right\}$. L_{8} is regular. T / F ?
9. $\mathrm{L}_{9}=\left\{0^{i} 1^{\mathrm{i}} \mid \mathrm{i}\right.$ is divisible by 2,3 , but not 5$\}$. L_{9} is regular. T / F ?
10. $\mathbf{L}_{10}=\left\{\mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid \mathbf{w}\right.$ has at most $\left.374 \mathbf{1 s}\right\} . \mathbf{L}_{10}$ is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T / F ?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{0^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathbf{L}_{\mathbf{5}}=\left\{\mathbf{0}^{\boldsymbol{i}} \mid \mathbf{i}\right.$ is not divisible by $\left.\mathbf{1 7}\right\} . \mathbf{L}_{\mathbf{5}}$ is regular. T / F ?
6. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, or $\left.\mathbf{5}\right\}$. \mathbf{L}_{6} is regular. T / F ?
7. $\mathbf{L}_{8}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by 2,3 , but not $\left.\mathbf{5}\right\}$. L_{8} is regular. T / F ?
8. $\mathbf{L}_{9}=\left\{0^{i} 1^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{9} is regular. T / F ?
9. $\mathrm{L}_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 374 ls$\} . \mathrm{L}_{10}$ is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T/F?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{0^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathbf{L}_{\mathbf{5}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is not divisible by $\left.\mathbf{1 7}\right\} . \mathbf{L}_{\mathbf{5}}$ is regular. T/F?
6. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, or $\left.\mathbf{5}\right\} . \mathbf{L}_{6}$ is regular. T / F ?
7. $\mathbf{L}_{\mathbf{7}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, and $\left.\mathbf{5}\right\}$. $\mathbf{L}_{\mathbf{7}}$ is regular. T / F ?
8. $\mathbf{L}_{9}=\left\{0^{i} 1^{i} \mid \mathbf{i}\right.$ is divisible by 2,3 , but not 5$\}$. \mathbf{L}_{9} is regular. T / F ?
9. $\mathbf{L}_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most $\left.374 \mathbf{1 s}\right\}$. \mathbf{L}_{10} is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T / F ?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{0^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathbf{L}_{\mathbf{5}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is not divisible by $\left.\mathbf{1 7}\right\} . \mathbf{L}_{\mathbf{5}}$ is regular. T/F?
6. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, or $\left.\mathbf{5}\right\} . \mathbf{L}_{6}$ is regular. T / F ?
7. $\mathbf{L}_{7}=\left\{0^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, and $\left.\mathbf{5}\right\}$. $\mathbf{L}_{\mathbf{7}}$ is regular. T / F ?
8. $\mathbf{L}_{\mathbf{8}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, but not $\left.\mathbf{5}\right\}$. $\mathbf{L}_{\mathbf{8}}$ is regular. T / F ?
9. $\mathbf{L}_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most $\left.374 \mathbf{1 s}\right\}$. \mathbf{L}_{10} is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{2}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T / F ?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{0^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathbf{L}_{\mathbf{5}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is not divisible by $\left.\mathbf{1 7}\right\} . \mathbf{L}_{5}$ is regular. T/F?
6. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, or $\left.\mathbf{5}\right\}$. \mathbf{L}_{6} is regular. T / F ?
7. $\mathbf{L}_{\mathbf{7}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, and $\left.\mathbf{5}\right\}$. $\mathbf{L}_{\mathbf{7}}$ is regular. T / F ?
8. $\mathbf{L}_{\mathbf{8}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{8} is regular. T / F ?
9. $\mathbf{L}_{9}=\left\{0^{\mathbf{i}} \mathbf{1}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{9} is regular. T / F ?

Review questions

1. $\mathbf{L}_{\mathbf{1}} \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$ be a finite language. $\mathbf{L}_{\mathbf{1}}$ is a set with finite number of strings. T / F ?
2. $\mathbf{L}_{\mathbf{2}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{2}}$ is regular. T / F ?
3. $\mathbf{L}_{3}=\left\{\mathbf{0}^{\mathbf{2 i}} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language $\mathbf{L}_{\mathbf{3}}$ is regular. T / F ?
4. $\mathbf{L}_{4}=\left\{0^{17 i} \mid \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots, \infty\right\}$. The language \mathbf{L}_{4} is regular. T / F ?
5. $\mathbf{L}_{\mathbf{5}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is not divisible by $\left.\mathbf{1 7}\right\} . \mathbf{L}_{5}$ is regular. T/F?
6. $\mathbf{L}_{6}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, or $\left.\mathbf{5}\right\}$. \mathbf{L}_{6} is regular. T / F ?
7. $\mathbf{L}_{\mathbf{7}}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, and $\left.\mathbf{5}\right\}$. $\mathbf{L}_{\mathbf{7}}$ is regular. T / F ?
8. $\mathbf{L}_{8}=\left\{\mathbf{0}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{8} is regular. T / F ?
9. $\mathbf{L}_{9}=\left\{0^{\mathbf{i}} \mathbf{1}^{\mathbf{i}} \mid \mathbf{i}\right.$ is divisible by $\mathbf{2 , 3}$, but not $\left.\mathbf{5}\right\}$. \mathbf{L}_{9} is regular. T / F ?
10. $\mathbf{L}_{10}=\left\{\mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid \mathbf{w}\right.$ has at most $\left.374 \mathbf{1 s}\right\}$. \mathbf{L}_{10} is regular. T / F ?

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022
2.2

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
- text search (editors, Unix/grep, emacs)
- compilers: lexical analysis
- compact way to represent interesting/useful languages
- dates back to 50's: Stephen Kleene who has a star names after him.

Inductive Definition

A regular expression \mathbf{r} over an alphabet $\boldsymbol{\Sigma}$ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- $\boldsymbol{\epsilon}$ denotes the language $\{\epsilon\}$.
- a denote the language $\{\mathbf{a}\}$.

Inductive cases: If $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ are regular expressions denoting languages $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$

 respectively then,$\rightarrow\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
$\rightarrow\left(r_{1} \bullet r_{2}\right)=r_{1} \bullet r_{2}=\left(r_{1} r_{2}\right)$ denotes the language $\mathbf{R}_{1} \mathbf{R}_{2}$

- $\left(r_{1}\right)^{*}$ denotes the language \mathbf{R}_{1}^{*}

Inductive Definition

A regular expression \mathbf{r} over an alphabet $\boldsymbol{\Sigma}$ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- $\boldsymbol{\epsilon}$ denotes the language $\{\epsilon\}$.
- a denote the language $\{\mathrm{a}\}$.

Inductive cases: If $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ are regular expressions denoting languages $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ respectively then,

- $\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}}$) denotes the language $\mathbf{R}_{\mathbf{1}} \cup \mathbf{R}_{\mathbf{2}}$
$-\left(\mathbf{r}_{1} \bullet \mathbf{r}_{2}\right)=\mathbf{r}_{1} \bullet \mathbf{r}_{2}=\left(\mathbf{r}_{1} \mathbf{r}_{2}\right)$ denotes the language $\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{2}}$
- $\left(r_{1}\right)^{*}$ denotes the language \mathbf{R}_{1}^{*}

Regular Languages vs Regular Expressions

Regular Languages
\emptyset regular
$\{\epsilon\}$ regular
$\{\mathbf{a}\}$ regular for $\mathbf{a} \in \boldsymbol{\Sigma}$
$\mathbf{R}_{\mathbf{1}} \cup \mathbf{R}_{\mathbf{2}}$ regular if both are $\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{2}}$ regular if both are \mathbf{R}^{*} is regular if \mathbf{R} is

Regular Expressions

\emptyset denotes \emptyset
ϵ denotes $\{\epsilon\}$
a denote $\{\mathbf{a}\}$
$\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}}$ denotes $\mathbf{R}_{\mathbf{1}} \cup \mathbf{R}_{\mathbf{2}}$
$\mathbf{r}_{\mathbf{1}} \bullet \mathbf{r}_{\mathbf{2}}$ denotes $\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{2}}$
\mathbf{r}^{*} denote \mathbf{R}^{*}

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language!
Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
\Rightarrow Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations. Example: $\mathrm{rst}=(\mathrm{rs}) \mathrm{t}=\mathrm{r}(\mathrm{st}), \mathrm{r}+\mathrm{s}+\mathrm{t}=\mathrm{r}+(\mathrm{s}+\mathrm{t})=(\mathrm{r}+\mathrm{s})+\mathrm{t}$.
- Superscript + . For convenience, define $\mathbf{r}^{+}=\mathbf{r} \mathbf{r}^{*}$. Hence if $\mathbf{L}(\mathbf{r})=\mathbf{R}$ then $\mathrm{L}\left(\mathrm{r}^{+}\right)=\mathrm{R}^{+}$.
- Other notation: $\mathrm{r}+\mathrm{s}, \mathrm{r} \cup \mathrm{s}, \mathrm{r} \mid \mathrm{s}$ all denote union. rs is sometimes written as $\mathrm{r} \bullet \mathrm{s}$.

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language!
Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $\mathbf{L}\left(\mathbf{r}_{1}\right)=\mathbf{L}\left(\mathbf{r}_{2}\right)$.
$>$ Omit parenthesis by adopting precedence order: $*$, concatenate, + Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+\mathbf{t}$
- Omit parenthesis by associativity of each of these operations. Example: $\mathrm{rst}=(\mathrm{rs}) \mathrm{t}=\mathrm{r}(\mathrm{st}), \mathrm{r}+\mathrm{s}+\mathrm{t}=\mathrm{r}+(\mathrm{s}+\mathrm{t})=(\mathrm{r}+\mathrm{s})+\mathrm{t}$. - Superscript + . For convenience, define $\mathbf{r}^{+}=\mathbf{r r}^{*}$. Hence if $\mathrm{L}(\mathbf{r})=\mathbf{R}$ then $\mathrm{L}\left(\mathrm{r}^{+}\right)=\mathrm{R}^{+}$.
- Other notation: $\mathrm{r}+\mathrm{s}, \mathrm{r} \cup \mathrm{s}, \mathrm{r} \mid \mathrm{s}$ all denote union. rs is sometimes written as $\mathrm{r} \bullet \mathrm{s}$.

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language!
Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $\mathbf{L}\left(\mathbf{r}_{\mathbf{1}}\right)=\mathbf{L}\left(\mathbf{r}_{\mathbf{2}}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $\mathbf{r}^{*} \mathbf{s}+\mathbf{t}=\left(\left(r^{*}\right) \mathbf{s}\right)+\mathbf{t}$
\rightarrow Omit parenthesis by associativity of each of these operations. Example: $\mathrm{rst}=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$. $>$ Superscript + . For convenience, define $\mathbf{r}^{+}=\mathbf{r} \mathbf{r}^{*}$. Hence if $\mathbf{L}(\mathbf{r})=\mathbf{R}$ then $\mathrm{L}\left(\mathrm{r}^{+}\right)=\mathrm{R}^{+}$.
- Other notation: $\mathbf{r}+\mathbf{s}, \mathbf{r} \cup \mathbf{s}, \mathbf{r} \mid \mathbf{s}$ all denote union. $\mathbf{r s}$ is sometimes written as $\mathbf{r} \bullet \mathbf{s}$.

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language!
Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $\mathbf{L}\left(\mathbf{r}_{\mathbf{1}}\right)=\mathbf{L}\left(\boldsymbol{r}_{\mathbf{2}}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $\mathbf{r}^{*} \mathrm{~s}+\mathrm{t}=\left(\left(\mathrm{r}^{*}\right) \mathbf{s}\right)+\mathrm{t}$
- Omit parenthesis by associativity of each of these operations. Example: $\mathbf{r s t}=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
\rightarrow Other notation: $\mathbf{r}+\mathbf{s}, \mathbf{r} \cup \mathbf{s}, \mathbf{r} \mid \mathbf{s}$ all denote union. $\mathbf{r s}$ is sometimes written as $\mathbf{r} \bullet \mathbf{s}$.

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language!
Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $\mathbf{L}\left(\mathbf{r}_{\mathbf{1}}\right)=\mathbf{L}\left(\boldsymbol{r}_{\mathbf{2}}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + .

Example: $\mathbf{r}^{*} \mathbf{s}+\mathbf{t}=\left(\left(r^{*}\right) \mathbf{s}\right)+\mathbf{t}$

- Omit parenthesis by associativity of each of these operations. Example: $\mathbf{r s t}=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $\mathbf{r}^{+}=\mathbf{r r}^{*}$. Hence if $\mathbf{L}(\mathbf{r})=\mathbf{R}$ then $\mathbf{L}\left(\mathbf{r}^{+}\right)=\mathbf{R}^{+}$.
\rightarrow Other notation: $r+s, r \cup s, r \mid s$ all denote union. rs is sometimes written as res.

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language!
Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $\mathbf{L}\left(\mathbf{r}_{1}\right)=\mathbf{L}\left(\mathbf{r}_{\mathbf{2}}\right)$.
- Omit parenthesis by adopting precedence order: *, concatenate, + .

Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$

- Omit parenthesis by associativity of each of these operations. Example: $\mathrm{rst}=(\mathrm{rs}) \mathrm{t}=\mathrm{r}(\mathrm{st}), \mathrm{r}+\mathrm{s}+\mathrm{t}=\mathrm{r}+(\mathrm{s}+\mathrm{t})=(\mathrm{r}+\mathrm{s})+\mathrm{t}$.
- Superscript + . For convenience, define $\mathbf{r}^{+}=\mathbf{r r}^{*}$. Hence if $\mathbf{L}(\mathbf{r})=\mathbf{R}$ then $\mathbf{L}\left(\mathrm{r}^{+}\right)=\mathbf{R}^{+}$.
- Other notation: $\mathbf{r}+\mathbf{s}, \mathbf{r} \cup \mathbf{s}, \mathbf{r} \mid \mathbf{s}$ all denote union. \mathbf{r} is sometimes written as $\mathbf{r} \bullet \mathbf{s}$.

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for \mathbf{L} (if possible)
- Given a regular expression r we would like to "understand" $L(r)$ (say by giving an English description)

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for \mathbf{L} (if possible)
- Given a regular expression \mathbf{r} we would like to "understand" $\mathbf{L}(\mathbf{r})$ (say by giving an English description)

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022
2.2.1

Some examples of regular expressions

Understanding regular expressions

- (0 $\mathbf{0} \mathbf{1})^{*}$: set of all strings over $\{\mathbf{0}, \mathbf{1}\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
$\rightarrow 0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- $\emptyset 0$
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s. Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+\mathbf{0})(\mathbf{1}+\mathbf{1 0})^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(\mathbf{0}+\mathbf{1})^{*} \mathbf{0 0 1}(\mathbf{0}+\mathbf{1})^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- $\emptyset 0$:
- $(\epsilon+\mathbf{1})(01)^{*}(\epsilon+0)$: alternating $0 s$ and 1 s . Alternatively, no two consecutive $0 s$ and no two consecutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- $\emptyset 0$:
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s . Alternatively, no two consecutive 0 s and no two consecutive 1 s
$\rightarrow(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{0} \mathbf{1 0} \mathbf{0} \mathbf{1 0} \mathbf{0}^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s . Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}\right)^{*}$: strings with number of $\mathbf{1}$'s divisible by $\mathbf{3}$
- $\emptyset 0$
$\rightarrow(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s. Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+\mathbf{0})(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}\right)^{*}$: strings with number of 1 's divisible by $\mathbf{3}$
- $\emptyset 0$:
$>(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s . Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+\mathbf{0})(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}^{*} \mathbf{1 0}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: $\}$
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s . Alternatively, no two consecutive 0 s and no two consecutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0} \mathbf{0}^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\boldsymbol{\epsilon}+\mathbf{1})(\mathbf{0 1})^{*}(\epsilon+\mathbf{0})$: alternating 0 s and 1 s. Alternatively, no two consecutive 0 s and no two consecutive 1s
$-(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0}^{*} \mathbf{1 0} \mathbf{0}^{*}\right.$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s . Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
$-(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0}^{*} \mathbf{1 0} \mathbf{0}^{*}\right.$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s . Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+\mathbf{0})(\mathbf{1}+\mathbf{1 0})^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0}^{*} \mathbf{1 0} \mathbf{0}^{*}\right.$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s . Alternatively, no two consecutive 0 s and no two consecutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Creating regular expressions

- bitstrings with the pattern $\mathbf{0 0 1}$ or the pattern $\mathbf{1 0 0}$ occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $\mathbf{0}^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's one answer: $\mathbf{0}^{*} 1 \mathbf{r}$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Creating regular expressions

- bitstrings with the pattern $\mathbf{0 0 1}$ or the pattern $\mathbf{1 0 0}$ occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's
one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's
one answer: $0^{*} \mathbf{1 r}$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Creating regular expressions

- bitstrings with the pattern 001 or the pattern $\mathbf{1 0 0}$ occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's
one answer: $0^{*}+\left(0 * 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's
one answer: $\mathbf{0}^{*} 1 \mathbf{r}$ where \mathbf{r} is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Creating regular expressions

- bitstrings with the pattern 001 or the pattern $\mathbf{1 0 0}$ occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}^{*}\right)^{*}$
- bitstrings with an odd number of 1 's
one answer: 0*1r where r is solution to previous part
\rightarrow bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of Os.

Creating regular expressions

- bitstrings with the pattern $\mathbf{0 0 1}$ or the pattern $\mathbf{1 0 0}$ occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}\right)^{*}$
- bitstrings with an odd number of $\mathbf{1}^{\prime}$ s
one answer: $0^{*} 1 r$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Creating regular expressions

- bitstrings with the pattern $\mathbf{0 0 1}$ or the pattern $\mathbf{1 0 0}$ occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1) * 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}\right)^{*}$
- bitstrings with an odd number of $\mathbf{1}^{\prime}$ s one answer: $\mathbf{0}^{*} 1 \mathbf{r}$ where \mathbf{r} is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Creating regular expressions

- bitstrings with the pattern $\mathbf{0 0 1}$ or the pattern $\mathbf{1 0 0}$ occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}\right)^{*}$
- bitstrings with an odd number of $\mathbf{1}^{\prime}$ s one answer: $\mathbf{0}^{*} 1 \mathbf{r}$ where \mathbf{r} is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s.

Creating regular expressions

- bitstrings with the pattern $\mathbf{0 0 1}$ or the pattern $\mathbf{1 0 0}$ occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0}^{*}\right)^{*}$
- bitstrings with an odd number of $\mathbf{1}^{\prime}$ s one answer: $\mathbf{0}^{*} 1 \mathbf{r}$ where \mathbf{r} is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Bit strings with odd number of $\mathbf{0} s$ and $\mathbf{1 s}$

The regular expression is

$$
\begin{aligned}
& (00+11)^{*}(01+10) \\
& \quad\left(00+11+(01+10)(00+11)^{*}(01+10)\right)^{*}
\end{aligned}
$$

(Solved using techniques to be presented in the following lectures...)

Regular expression identities

- $\mathbf{r}^{*} \mathbf{r}^{*}=\mathbf{r}^{*}$ meaning for any regular expression $\mathbf{r}, \mathbf{L}\left(\mathbf{r}^{*} \mathbf{r}^{*}\right)=\mathbf{L}\left(\mathbf{r}^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
$-r r^{*}=r^{*} r$
- $(\mathrm{rs})^{*} \mathrm{r}=\mathrm{r}(\mathrm{sr})^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Regular expression identities

- $\mathbf{r}^{*} \mathbf{r}^{*}=\mathbf{r}^{*}$ meaning for any regular expression $\mathbf{r}, \mathbf{L}\left(\mathbf{r}^{*} \mathbf{r}^{*}\right)=\mathbf{L}\left(\mathbf{r}^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
$-r r^{*}=r^{*} r$
- $(\mathrm{rs})^{*} \mathrm{r}=\mathrm{r}(\mathrm{sr})^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Regular expression identities

- $\mathbf{r}^{*} \mathbf{r}^{*}=\mathbf{r}^{*}$ meaning for any regular expression $\mathbf{r}, \mathbf{L}\left(\mathbf{r}^{*} \mathbf{r}^{*}\right)=\mathbf{L}\left(\mathbf{r}^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
$-r r^{*}=r^{*} r$
- $(\mathrm{rs})^{*} \mathrm{r}=\mathrm{r}(\mathrm{sr})^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive

Regular expression identities

- $\mathbf{r}^{*} \mathbf{r}^{*}=\mathbf{r}^{*}$ meaning for any regular expression $\mathbf{r}, \mathbf{L}\left(\mathbf{r}^{*} \mathbf{r}^{*}\right)=\mathbf{L}\left(\mathbf{r}^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
$-r r^{*}=r^{*} r$
- $(\mathrm{rs})^{*} \mathrm{r}=\mathrm{r}(\mathrm{sr})^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?
By induction. On what? Length of \mathbf{r} since \mathbf{r} is a string obtained from specific inductive rules.

Intro. Algorithms \& Models of Computation CS/ECE 374A, Fall 2022
2.2.2

An example of a non-regular language

A non-regular language and other closure properties Consider $\mathbf{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

\square
The language \mathbf{L} is not a regular language.
How do we prove it?

Other questions:

- Suppose \mathbf{R}_{1} is regular and \mathbf{R}_{2} is regular. Is $\mathbf{R}_{1} \cap \mathbf{R}_{2}$ regular?
\rightarrow Suppose \mathbf{R}_{1} is regular is $\mathbf{R}_{\mathbf{1}}$ (complement of $\mathbf{R}_{\mathbf{1}}$) regular?

A non-regular language and other closure properties Consider $\mathbf{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathbf{n} \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

$\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$. The language \mathbf{L} is not a regular language.

How do we prove it?

Other questions:

\rightarrow Sunnose \mathbf{R}_{1} is regular and \mathbf{R}_{2} is regular. Is $\mathbf{R}_{1} \cap \mathbf{R}_{2}$ regular?
\Rightarrow Suppose R_{1} is regular is R_{1} (complement of R_{1}) regular?

A non-regular language and other closure properties Consider $\mathbf{L}=\left\{0^{\mathbf{n}} \mathbf{1}^{\mathrm{n}} \mid \mathbf{n} \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

$\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.
The language \mathbf{L} is not a regular language.
How do we prove it?

Other questions:
\rightarrow Sunnose \mathbf{R}_{1} is regular and \mathbf{R}_{2} is regular. Is $\mathbf{R}_{1} \cap \mathbf{R}_{2}$ regular?
\Rightarrow Suppose R_{1} is regular is R_{1} (complement of R_{1}) regular?

A non-regular language and other closure properties Consider $\mathbf{L}=\left\{0^{\mathrm{n}} \mathbf{1}^{\mathrm{n}} \mid \mathbf{n} \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

$\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.
The language \mathbf{L} is not a regular language.
How do we prove it?

Other questions:

- Suppose $\mathbf{R}_{\mathbf{1}}$ is regular and $\mathbf{R}_{\mathbf{2}}$ is regular. Is $\mathbf{R}_{\mathbf{1}} \cap \mathbf{R}_{\mathbf{2}}$ regular?
- Suppose $\mathbf{R}_{\mathbf{1}}$ is regular is $\overline{\mathbf{R}_{\mathbf{1}}}$ (complement of $\mathbf{R}_{\mathbf{1}}$) regular?

A sketchy proof

$\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.
The language \mathbf{L} is not a regular language.

