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Minimum Spanning Tree
Input Connected graph G = (V ,E) with edge costs
Goal Find T ⊆ E such that (V ,T ) is connected and total cost of all edges in

T is smallest
1 T is the minimum spanning tree (MST) of G
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Applications
1 Network Design

1 Designing networks with minimum cost but maximum connectivity
2 Approximation algorithms

1 Can be used to bound the optimality of algorithms to approximate Traveling
Salesman Problem, Steiner Trees, etc.

3 Cluster Analysis
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Some history
The first algorithm for MST was first published in 1926 by Otakar Borůvka as a
method of constructing an efficient electricity network for Moravia. From his memoirs:

My studies at poly-technical schools made me feel very close to engineering
sciences and made me fully appreciate technical and other applications of math-
ematics. Soon after the end of World War I, at the beginning of the 192Os,
the Electric Power Company of Western Moravia, Brno, was engaged in rural
electrification of Southern Moravia. In the framework of my friendly relations
with some of their employees, I was asked to solve, from a mathematical stand-
point, the question of the most economical construction of an electric power
network. I succeeded in finding a construction-as it would be expressed today-of
a maximal connected subgraph of minimum length, which I published in 1926
(i.e., at a time when the theory of graphs did not exist).

There is some work in 1909 by a Polish anthropologist Jan Czekanowski on clustering,
which is a precursor to MST.

6 / 77



THE END
...

(for now)
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Some basic properties of Spanning Trees
Tree = undirected graph in which any two vertices are connected by exactly one
path.
Tree = a connected graph with no cycles.
Subgraph H of G is spanning for G, if G and H have same connected
components.
A graph G is connected ⇐⇒ it has a spanning tree.
Every tree has a leaf (i.e., vertex of degree one).
Every spanning tree of a graph on n nodes has n − 1 edges.
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Exchanging an edge in a spanning tree
Lemma 20.1.
T = (V ,ET ): a spanning tree of G = (V ,E). For every non-tree edge e ∈ E \ ET
there is a unique cycle C in T + e. For every edge f ∈ C − {e}, T − f + e is
another spanning tree of G.
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THE END
...

(for now)
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Assumption
And for now . . .

Assumption 20.1.
Edge costs are distinct, that is no two edge costs are equal.
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Cuts
Definition 20.2.
Given a graph G = (V ,E), a cut is a partition
of the vertices of the graph into two sets
(S,V \ S).

Edges having an endpoint on both sides are the
edges of the cut.

A cut edge is crossing the cut.

S V \ S

(S,V \ S) = {uv ∈ E | u ∈ S, v ∈ V \ S}.
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Safe and Unsafe Edges
Definition 20.3.
An edge e = (u, v) is a safe edge if there is some partition of V into S and V \ S and
e is the unique minimum cost edge crossing S (one end in S and the other in V \ S).

Definition 20.4.
An edge e = (u, v) is an unsafe edge if there is some cycle C such that e is the unique
maximum cost edge in C .
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Every edge is either safe or unsafe
Proposition 20.5.
If edge costs are distinct then every edge is either safe or unsafe.

Proof.
Consider any edge e = uv .
Let G<w(e) = (V , {xy ∈ E | w(xy) < w(e)}).
Observe that e /∈ E

(
G<w(e)

)
.

1 If x, y in some connected component of G<w(e), then G<w(e) + e contains a cycle
where e is most expensive.
=⇒ e is unsafe.

2 If x and y are in diff connected component of G<w(e),
Let S the vertices of connected component of G<w(e) containing x.
The edge e is cheapest edge in cut (S,V \ S).
=⇒ e is safe.
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Safe edge
Example...

Every cut identifies one safe edge...

S V \ S
13

7

3

5

11

...the cheapest edge in the cut.
Note: An edge e may be a safe edge for many cuts!
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Safe edge
Example...
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Unsafe edge
Example...

Every cycle identifies one unsafe edge...

5
7

2

15

3

...the most expensive edge in the cycle.
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Example
20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...
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Some key observations
Proofs later

Lemma 20.6.
If e is a safe edge then every minimum spanning tree contains e.

Lemma 20.7.
If e is an unsafe edge then no MST of G contains e.
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THE END
...

(for now)
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Greedy Template
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do

choose e ∈ E
remove e from E
if (e satisfies condition)

add e to T
return the set T

Main Task: In what order should edges be processed? When should we add edge to
spanning tree?

KA PA RD
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Kruskal’s Algorithm
Process edges in the order of their costs (starting from the least) and add edges to T as
long as they don’t form a cycle.
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Figure: MST of G
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Prim’s Algorithm: Animation
T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .
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Reverse Delete Algorithm
Initially Z is the set of all edges in G
T ⇐ Z (* T will store edges of a MST *)
while Z is not empty do

choose e ∈ Z of largest cost
remove e from Z
if removing e does not disconnect T then

remove e from T
return the set T

Returns a minimum spanning tree. Back
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Borůvka’s Algorithm
Simplest to implement. See notes.
Assume G is a connected graph.

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V \ S
Add edges in X to T

return the set T
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Borůvka’s Algorithm
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THE END
...

(for now)
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20.4.1
Safe edges must be in the MST
FLNAME:20.4.1.0 ZZZ:20.4.1.0 Safe edges must be in the MST
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Correctness of MST Algorithms
1 Many different MST algorithms
2 All of them rely on some basic properties of MSTs, in particular the Cut

Property to be seen shortly.
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Key Observation: Cut Property
Lemma 20.1.
If e is a safe edge then every minimum spanning tree contains e.

Proof.
1 Suppose (for contradiction) e is not in MST T .
2 Since e is safe there is an S ⊂ V such that e is the unique min cost edge crossing

S.
3 Since T is connected, there must be some edge f with one end in S and the other

in V \ S
4 Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of lower cost! Error: T ′

may not be a spanning tree!!
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Error in Proof: Example
Problematic example. S = {1, 2, 7}, e = (7, 3), f = (1, 6). T− f + e is not a spanning tree.
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Proof of Cut Property
Proof.
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1 Suppose e = (v,w) is not in MST T and e is
min weight edge in cut (S,V \ S). Assume
v ∈ S.

2 T is spanning tree: there is a unique path P
from v to w in T

3 Let w ′ be the first vertex in P belonging to
V \ S; let v ′ be the vertex just before it on P ,
and let e′ = (v ′,w ′)

4 T ′ = (T \ {e′}) ∪ {e} is spanning tree of
lower cost. (Why?)
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Proof of Cut Property (contd)
Observation 20.2.
T ′ = (T \ {e′}) ∪ {e} is a spanning tree.

Proof.
T ′ is connected.

Removed e′ = (v ′,w ′) from T but v ′ and w ′ are connected by the path
P − f + e in T ′. Hence T ′ is connected if T is.

T ′ is a tree
T ′ is connected and has n − 1 edges (since T had n − 1 edges) and hence T ′ is
a tree
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THE END
...

(for now)
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20.4.2
The safe edges form the MST
FLNAME:20.4.2.0 ZZZ:20.4.2.0 The safe edges form the MST
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Safe Edges form a connected graph
Lemma 20.3.
Let G be a connected graph with distinct edge costs, then the set of safe edges form a
connected graph.

Proof.
1 Suppose not. Let S be a connected component in the graph induced by the safe

edges.
2 Consider the edges crossing S, there must be a safe edge among them since edge

costs are distinct and so we must have picked it.
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Safe Edges do not contain a cycle
Lemma 20.4.
Let G be a connected graph with distinct edge costs, then the set of safe edges does
not contain a cycle.

Proof.
Proposition 20.5 : proved every edge in graph is either safe or unsafe. If ∃ cycle, then
by definition the most expensive edge in the cycle is unsafe. Contradiction.
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Lemma 20.4.
Let G be a connected graph with distinct edge costs, then the set of safe edges does
not contain a cycle.

Proof.
Assume false, and let π a cycle made of
safe edges.
e: Most expensive edge in the cycle π.
C = (S,V \ S): Cut that e is safe for.
π must have at least two edges in C.
f : cheapest edge in π ∩ C.
e is not cheapest edge in C.
A contradiction.

π

e
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Safe Edges form an MST
Corollary 20.5.
Let G be a connected graph with distinct edge costs, then set of safe edges form the
unique MST of G.

Consequence: Every correct MST algorithm when G has unique edge costs includes
exactly the safe edges.
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THE END
...

(for now)
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20.4.3
The unsafe edges are NOT in the MST
FLNAME:20.4.3.0 ZZZ:20.4.3.0 The unsafe edges are NOT in the MST
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Cycle Property
Lemma 20.6.
If e is an unsafe edge then no MST of G contains e.
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Cycle Property
Lemma 20.6.
If e is an unsafe edge then no MST of G contains e.

Proof.
Exercise.

Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and
unsafe definitions do not rely on distinct cost assumption.
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...
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Correctness of the various MST algorithms
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Correctness of Prim’s Algorithm
Prim’s Algorithm
Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.
1 If e is added to tree, then e is safe and belongs to every MST.

1 Let S be the vertices connected by edges in T when e is added.
2 e is edge of lowest cost with one end in S and the other in V \ S and hence e is

safe.
2 Set of edges output is a spanning tree

1 Set of edges output forms a connected graph: by induction, S is connected in each
iteration and eventually S = V .

2 Only safe edges added and they do not have a cycle
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Correctness of Kruskal’s Algorithm
Kruskal’s Algorithm
Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.
1 If e = (u, v) is added to tree, then e is safe

1 When algorithm adds e let S and S’ be the connected components containing u
and v respectively

2 e is the lowest cost edge crossing S (and also S’).
3 If there is an edge e′ crossing S and has lower cost than e, then e′ would come

before e in the sorted order and would be added by the algorithm to T
2 Set of edges output is a spanning tree : exercise
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Correctness of Borůvka’s Algorithm
Proof of correctness.
Argue that only safe edges are added.
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Correctness of Reverse Delete Algorithm
Reverse Delete Algorithm
Consider edges in decreasing cost and remove an edge if it does not disconnect the
graph

Proof of correctness.
Argue that only unsafe edges are removed.
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THE END
...

(for now)
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When edge costs are not distinct
Heuristic argument: Make edge costs distinct by adding a small tiny and different cost
to each edge

Formal argument: Order edges lexicographically to break ties
1 ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)
2 Lexicographic ordering extends to sets of edges. If A,B ⊆ E , A 6= B then

A ≺ B if either c(A) < c(B) or (c(A) = c(B) and A \ B has a lower indexed
edge than B \ A).

3 Can order all spanning trees according to lexicographic order of their edge sets.
Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with respect to
lexicographic ordering.
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Edge Costs: Positive and Negative
1 Algorithms and proofs don’t assume that edge costs are non-negative! MST

algorithms work for arbitrary edge costs.
2 Another way to see this: make edge costs non-negative by adding to each edge a

large enough positive number. Why does this work for MSTs but not for shortest
paths?

3 Can compute maximum weight spanning tree by negating edge costs and then
computing an MST.
Question: Why does this not work for shortest paths?
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THE END
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(for now)
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Implementing Borůvka’s Algorithm
No complex data structure needed.

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V \ S
Add edges in X to T

return the set T

O(log n) iterations of while loop. Why? Number of connected components shrink
by at least half since each component merges with one or more other components.
Each iteration can be implemented in O(m) time.

Running time: O(m log n) time.
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THE END
...

(for now)
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Implementing Prim’s Algorithm
Implementing Prim’s Algorithm

Prim_ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)
while S 6= V do

pick e = (v,w) ∈ E such that
v ∈ S and w ∈ V \ S
e has minimum cost

T = T ∪ e
S = S ∪ w

return the set T

Analysis
1 Number of iterations = O(n), where n is number of vertices
2 Picking e is O(m) where m is the number of edges
3 Total time O(nm)
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3 Total time O(nm)
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Making Prim’s Algorithm Great Again
By making it look like Dijkstra’s algorithm

// c(e): Cost of the edge e
Prim_ComputeMSTv1

E is the set of all edges in G
S ← {1}
T is empty
(* T will store edges of a MST *)
for v 6∈ S, d(v) = minx∈S c(xv)
for v 6∈ S, p(v) = arg minx∈S c(xv)
while S 6= V do

pick v ∈ V \ S with minimum d(v)
e ← vp(v)
T ← T ∪ {e}
S ← S ∪ {v}
update arrays d and p

return the set T
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while S 6= V do

v ← arg minu∈V\S d(u)
T ← T ∪ {vp(v)}
S ← S ∪ {v}
for each u in Adj(v) do

d(u)← min

{
d(u)
c(vu)

if d(u) = c(vu) then
p(u)← v

return T
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S ← S ∪ {v}
for each u in Adj(v) do

d(u)← min

{
d(u)
d(v) + `(v, u)

if d(u) = d(v) + `(v, u) then
p(u)← v

return d(V )
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while S 6= V do

v ← arg minu∈V\S d(u)
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d(u)← min

{
d(u)
d(v) + `(v, u)

if d(u) = d(v) + `(v, u) then
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return d(V )

Prim’s algorithm is essentially Dijkstra’s algorithm!
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20.6.3
Implementing Prim’s algorithm with priority
queues
FLNAME:20.6.3.0 ZZZ:20.6.3.0 Implementing Prim’s algorithm with priority queues
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Priority Queues
Data structure to store a set S of n elements where each element v ∈ S has an
associated real/integer key k(v) such that the following operations

1 makeQ: create an empty queue
2 findMin: find the minimum key in S
3 extractMin: Remove v ∈ S with smallest key and return it
4 add(v , k(v)): Add new element v with key k(v) to S
5 Delete(v): Remove element v from S
6 decreaseKey (v , k′(v)): decrease key of v from k(v) (current key) to k′(v)

(new key). Assumption: k′(v) ≤ k(v)
7 meld: merge two separate priority queues into one
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Prim’s using priority queues
Prim_ComputeMSTv3

T ← ∅, S ← ∅, s ← 1
∀v ∈ V(G) : d(v)←∞, p(v)← Nil
d(s)← 0
while S 6= V do

v = arg minu∈V\S d(u)
T = T ∪ {vp(v)}
S = S ∪ {v}
for each u in Adj(v) do

d(u)← min

{
d(u)
c(vu)

if d(u) = c(vu) then
p(u)← v

return T

Maintain vertices in V \ S in a priority queue with key d(v)
1 Requires O(n) extractMin operations
2 Requires O(m) decreaseKey operations
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Running time of Prim’s Algorithm
O(n) extractMin operations and O(m) decreaseKey operations

1 Using standard Heaps, extractMin and decreaseKey take O(log n) time. Total:
O((m + n) log n)

2 Using Fibonacci Heaps, O(log n) for extractMin and O(1) (amortized) for
decreaseKey. Total: O(n log n + m).

3 Prim’s algorithm and Dijkstra’s algorithms are similar. Where is the difference?
4 Prim’s algorithm = Dijkstra where length of a path π is the weight of the heaviest

edge in π. (Bottleneck shortest path.)
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THE END
...

(for now)
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20.6.4
Union-find data-structure
FLNAME:20.6.4.0 ZZZ:20.6.4.0 Union-find data-structure
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Requirements from the union-find data-structure
1 Maintain a collection of sets.
2 makeSet(x) - creates a set that contains the single element x.
3 find(x) - returns the set that contains x.
4 union(A,B) - returns set = union of A and B. That is A ∪ B.

... merges the two sets A and B and return the merged set.
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Pseudo-code of Union-Find using reverse tree...
makeSet(x)

p(x)← x
rank(x)← 0

find(x)
if x 6= p(x) then

p(x)← find(p(x))
return p(x)

union(x, y )
A← find(x)
B ← find(y)
if rank(A) > rank(B) then

p(B)← A
else

p(A)← B
if rank(A) = rank(B) then

rank(B)← rank(B) + 1
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Union-find
Theorem 20.1.
For a sequence of m operations over n elements, the overall running time of the
UnionFind data-structure is O((n + m) log∗ n).

(Better analysis is known – to involved to explain here.)
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THE END
...

(for now)
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20.6.5
Implementing Kruskal’s Algorithm
FLNAME:20.6.5.0 ZZZ:20.6.5.0 Implementing Kruskal’s Algorithm
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Kruskal’s Algorithm
Kruskal_ComputeMST

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do

choose e ∈ E of minimum cost
if (T ∪ {e} does not have cycles)

add e to T
return the set T

1 Presort edges based on cost. Choosing minimum can be done in O(1) time
2 Do BFS/DFS on T ∪ {e}. Takes O(n) time
3 Total time O(m log m) + O(mn) = O(mn)
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Implementing Kruskal’s Algorithm Efficiently
Kruskal_ComputeMST

Sort edges in E based on cost
T is empty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do

pick e = (u, v) ∈ E of minimum cost
if u and v belong to different sets

add e to T
merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set and to merge two
sets.
Using Union-Find data structure can implement Kruskal’s algorithm in
O((m + n) log m) time.
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THE END
...

(for now)
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20.7
MST: An epilogue
FLNAME:20.7.0.0 ZZZ:20.7.0.0 MST: An epilogue
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Best Known Asymptotic Running Times for MST
Prim’s algorithm using Fibonacci heaps: O(n log n + m).
If m is O(n) then running time is Ω(n log n).

Question
Is there a linear time (O(m + n) time) algorithm for MST?

1 O(m log∗ m) time [Fredman and Tarjan 1987]
2 O(m + n) time using bit operations in RAM model [Fredman, Willard 1994]
3 O(m + n) expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
4 O((n + m)α(m, n)) time [Chazelle 2000]
5 Still open: Is there an O(n + m) time deterministic algorithm in the comparison

model?
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