Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

Algorithms for Minimum Spanning Trees

Lecture 20
Thursday, November 5, 2020

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
20.1

Minimum Spanning Tree

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

20.1.1
 The Problem

Minimum Spanning Tree

Input Connected graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge costs
Goal Find $\boldsymbol{T} \subseteq \boldsymbol{E}$ such that $(\boldsymbol{V}, \boldsymbol{T})$ is connected and total cost of all edges in \boldsymbol{T} is smallest
(1) \boldsymbol{T} is the minimum spanning tree (MST) of \boldsymbol{G}

Minimum Spanning Tree

Input Connected graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge costs
Goal Find $\boldsymbol{T} \subseteq \boldsymbol{E}$ such that $(\boldsymbol{V}, \boldsymbol{T})$ is connected and total cost of all edges in \boldsymbol{T} is smallest
(1) \boldsymbol{T} is the minimum spanning tree (MST) of \boldsymbol{G}

Applications

(1) Network Design
(1) Designing networks with minimum cost but maximum connectivity
(2) Approximation algorithms
(1) Can be used to bound the optimality of algorithms to approximate Traveling Salesman Problem, Steiner Trees, etc.
(3) Cluster Analysis

Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a method of constructing an efficient electricity network for Moravia. From his memoirs:

> My studies at poly-technical schools made me feel very close to engineering sciences and made me fully appreciate technical and other applications of mathematics. Soon after the end of World War I, at the beginning of the 192Os, the Electric Power Company of Western Moravia, Brno, was engaged in rural electrification of Southern Moravia. In the framework of my friendly relations with some of their employees, I was asked to solve, from a mathematical standpoint, the question of the most economical construction of an electric power network. I succeeded in finding a construction-as it would be expressed today-of a maximal connected subgraph of minimum length, which I published in 1926 (i.e., at a time when the theory of graphs did not exist).

There is some work in 1909 by a Polish anthropologist Jan Czekanowski on clustering, which is a precursor to MST.

THE END

(for now)

Algorithms \& Models of Computation CS/ECE 374, Fall 2020

20.1.2
 Some graph theory

Some basic properties of Spanning Trees

- Tree $=$ undirected graph in which any two vertices are connected by exactly one path.
- Tree $=$ a connected graph with no cycles.
- Subgraph \boldsymbol{H} of \boldsymbol{G} is spanning for \boldsymbol{G}, if \boldsymbol{G} and \boldsymbol{H} have same connected components.
- A graph G is connected \Longleftrightarrow it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on \boldsymbol{n} nodes has $\boldsymbol{n}-1$ edges.

Some basic properties of Spanning Trees

- Tree $=$ undirected graph in which any two vertices are connected by exactly one path.
- Tree $=$ a connected graph with no cycles.
- Subgraph H of G is spanning for G, if G and H have same connected components.
- A graph \boldsymbol{G} is connected \Longleftrightarrow it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on \boldsymbol{n} nodes has $\boldsymbol{n}-\mathbf{1}$ edges.

Some basic properties of Spanning Trees

- Tree $=$ undirected graph in which any two vertices are connected by exactly one path.
- Tree $=$ a connected graph with no cycles.
- Subgraph \boldsymbol{H} of \boldsymbol{G} is spanning for \boldsymbol{G}, if \boldsymbol{G} and \boldsymbol{H} have same connected components.
- A graph G is connected \Longleftrightarrow it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on \boldsymbol{n} nodes has $\boldsymbol{n}-1$ edges.

Some basic properties of Spanning Trees

- Tree $=$ undirected graph in which any two vertices are connected by exactly one path.
- Tree $=$ a connected graph with no cycles.
- Subgraph \boldsymbol{H} of \boldsymbol{G} is spanning for \boldsymbol{G}, if \boldsymbol{G} and \boldsymbol{H} have same connected components.
- A graph \boldsymbol{G} is connected \Longleftrightarrow it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on \boldsymbol{n} nodes has $\boldsymbol{n}-\mathbf{1}$ edges.

Some basic properties of Spanning Trees

- Tree $=$ undirected graph in which any two vertices are connected by exactly one path.
- Tree $=$ a connected graph with no cycles.
- Subgraph \boldsymbol{H} of \boldsymbol{G} is spanning for \boldsymbol{G}, if \boldsymbol{G} and \boldsymbol{H} have same connected components.
- A graph \boldsymbol{G} is connected \Longleftrightarrow it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has $n-1$ edges.

Some basic properties of Spanning Trees

- Tree $=$ undirected graph in which any two vertices are connected by exactly one path.
- Tree $=$ a connected graph with no cycles.
- Subgraph \boldsymbol{H} of \boldsymbol{G} is spanning for \boldsymbol{G}, if \boldsymbol{G} and \boldsymbol{H} have same connected components.
- A graph \boldsymbol{G} is connected \Longleftrightarrow it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on \boldsymbol{n} nodes has $\boldsymbol{n}-\mathbf{1}$ edges.

Exchanging an edge in a spanning tree

Lemma 20.1.

$\boldsymbol{T}=\left(\boldsymbol{V}, \boldsymbol{E}_{\boldsymbol{T}}\right)$: a spanning tree of $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$. For every non-tree edge $\boldsymbol{e} \in \boldsymbol{E} \backslash \boldsymbol{E}_{\boldsymbol{T}}$ there is a unique cycle \boldsymbol{C} in $\boldsymbol{T}+\boldsymbol{e}$. For every edge $\boldsymbol{f} \in \boldsymbol{C}-\{\boldsymbol{e}\}, \boldsymbol{T}-\boldsymbol{f}+\boldsymbol{e}$ is another spanning tree of \boldsymbol{G}.

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

20.2
 Safe and unsafe edges

Assumption

And for now . . .

Assumption 20.1.

Edge costs are distinct, that is no two edge costs are equal.

Cuts

Definition 20.2.
Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a cut is a partition of the vertices of the graph into two sets $(\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S})$.

Edges having an endpoint on both sides are the edges of the cut.

A cut edge is crossing the cut.
$(S, V \backslash S)=\{u v \in E \mid u \in S, v \in V \backslash S\}$.

Cuts

Definition 20.2.

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a cut is a partition of the vertices of the graph into two sets $(S, V \backslash S)$.

Edges having an endpoint on both sides are the edges of the cut.

A cut edge is crossing the cut.
$(S, \boldsymbol{V} \backslash \boldsymbol{S})=\{\boldsymbol{u v} \in \boldsymbol{E} \mid \boldsymbol{u} \in \boldsymbol{S}, \boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}\}$.

Safe and Unsafe Edges

Definition 20.3.

An edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is a safe edge if there is some partition of \boldsymbol{V} into \boldsymbol{S} and $\boldsymbol{V} \backslash \boldsymbol{S}$ and \boldsymbol{e} is the unique minimum cost edge crossing \boldsymbol{S} (one end in \boldsymbol{S} and the other in $\boldsymbol{V} \backslash \boldsymbol{S}$).

Definition 20.4.
An edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is an unsafe edge if there is some cycle \boldsymbol{C} such that \boldsymbol{e} is the unique
maximum cost edge in C.

Safe and Unsafe Edges

Definition 20.3.

An edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is a safe edge if there is some partition of \boldsymbol{V} into \boldsymbol{S} and $\boldsymbol{V} \backslash \boldsymbol{S}$ and \boldsymbol{e} is the unique minimum cost edge crossing \boldsymbol{S} (one end in \boldsymbol{S} and the other in $\boldsymbol{V} \backslash \boldsymbol{S}$).

Definition 20.4.

An edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is an unsafe edge if there is some cycle \boldsymbol{C} such that \boldsymbol{e} is the unique maximum cost edge in \boldsymbol{C}.

Every edge is either safe or unsafe

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge $\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v}$.
Let $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}=(\boldsymbol{V},\{\boldsymbol{x y} \in \boldsymbol{E} \mid \boldsymbol{w}(\boldsymbol{x y})<\boldsymbol{w}(\boldsymbol{e})\})$.

Observe that $e \notin E\left(G_{<w(e)}\right)$

(1) If $\boldsymbol{x}, \boldsymbol{y}$ in some connected component of $G_{<w(e) \text {, then }} G_{<w(e)}+\boldsymbol{e}$ contains a cycle where e is most expensive.
$\Rightarrow e$ is unsafe.
(2) If \boldsymbol{x} and \boldsymbol{y} are in diff connected component of $G_{<w(e) \text {, }}$

Let S the vertices of connected component of $\boldsymbol{G}_{<\boldsymbol{w}(e)}$ containing x
The edge e is cheapest edge in $\operatorname{cut}(S, V \backslash S)$
$\Rightarrow e$ is safe

Every edge is either safe or unsafe

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge $\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v}$.
Let $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}=(\boldsymbol{V},\{\boldsymbol{x y} \in \boldsymbol{E} \mid \boldsymbol{w}(\boldsymbol{x y})<\boldsymbol{w}(\boldsymbol{e})\})$.
Observe that $\boldsymbol{e} \notin \mathbf{E}\left(\boldsymbol{G}_{<\boldsymbol{w}(e)}\right)$.
(1) If x, y in some connected component of $G_{<w(e)}$, then $G_{<w(e)}+e$ contains a cycle where e is most expensive.
$\Rightarrow e$ is unsafe.
(2) If x and y are in diff connected component of $G_{<w(e)}$

Let S the vertices of connected component of $\boldsymbol{G}_{<w(e)}$ containing \boldsymbol{x}
The edge \boldsymbol{e} is cheapest edge in $\operatorname{cut}(S, V \backslash S)$
$\Rightarrow e$ is safe

Every edge is either safe or unsafe

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge $\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v}$.
Let $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}=(\boldsymbol{V},\{\boldsymbol{x y} \in \boldsymbol{E} \mid \boldsymbol{w}(\boldsymbol{x y})<\boldsymbol{w}(\boldsymbol{e})\})$.
Observe that $\boldsymbol{e} \notin \mathbf{E}\left(\boldsymbol{G}_{<\boldsymbol{w}(e)}\right)$.
(1) If $\boldsymbol{x}, \boldsymbol{y}$ in some connected component of $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}$, then $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}+\boldsymbol{e}$ contains a cycle where \boldsymbol{e} is most expensive.
is unsate.
 $\Longrightarrow e$ is safe.

Every edge is either safe or unsafe

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge $\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v}$.
Let $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}=(\boldsymbol{V},\{\boldsymbol{x y} \in \boldsymbol{E} \mid \boldsymbol{w}(\boldsymbol{x y})<\boldsymbol{w}(\boldsymbol{e})\})$.
Observe that $\boldsymbol{e} \notin \mathbf{E}\left(\boldsymbol{G}_{<\boldsymbol{w}(e)}\right)$.
(1) If $\boldsymbol{x}, \boldsymbol{y}$ in some connected component of $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}$, then $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}+\boldsymbol{e}$ contains a cycle where \boldsymbol{e} is most expensive.
$\Longrightarrow \boldsymbol{e}$ is unsafe.
© If x and y are in diff connected component of $G_{<w(e)}$
Let S the vertices of connected component of $\boldsymbol{G}_{<w(e)}$ containing x
The edge \boldsymbol{e} is cheapest edge in cut ($\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S}$)
$\Longrightarrow e$ is safe.

Every edge is either safe or unsafe

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge $\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v}$.
Let $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}=(\boldsymbol{V},\{\boldsymbol{x y} \in \boldsymbol{E} \mid \boldsymbol{w}(\boldsymbol{x y})<\boldsymbol{w}(\boldsymbol{e})\})$.
Observe that $\boldsymbol{e} \notin \mathbf{E}\left(\boldsymbol{G}_{<\boldsymbol{w}(e)}\right)$.
(1) If $\boldsymbol{x}, \boldsymbol{y}$ in some connected component of $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}$, then $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}+\boldsymbol{e}$ contains a cycle where \boldsymbol{e} is most expensive.
$\Longrightarrow \boldsymbol{e}$ is unsafe.
(2) If \boldsymbol{x} and \boldsymbol{y} are in diff connected component of $\boldsymbol{G}_{<\boldsymbol{w}(e)}$,

Let S the vertices of connected component of $\boldsymbol{G}_{<w(e)}$ containing x
The edge e is cheapest edge in cut $(S, V \backslash S)$.
$\Longrightarrow \boldsymbol{e}$ is safe.

Every edge is either safe or unsafe

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge $\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v}$.
Let $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}=(\boldsymbol{V},\{x y \in \boldsymbol{E} \mid \boldsymbol{w}(\boldsymbol{x y})<\boldsymbol{w}(\boldsymbol{e})\})$.
Observe that $\boldsymbol{e} \notin \mathbf{E}\left(\boldsymbol{G}_{<\boldsymbol{w}(e)}\right)$.
(1) If $\boldsymbol{x}, \boldsymbol{y}$ in some connected component of $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}$, then $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}+\boldsymbol{e}$ contains a cycle where \boldsymbol{e} is most expensive.
$\Longrightarrow \boldsymbol{e}$ is unsafe.
(2) If \boldsymbol{x} and \boldsymbol{y} are in diff connected component of $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}$,

Let \boldsymbol{S} the vertices of connected component of $\boldsymbol{G}_{<\boldsymbol{w}(e)}$ containing \boldsymbol{x}.
The edge \boldsymbol{e} is cheapest edge in cut ($\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S}$).

Every edge is either safe or unsafe

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge $\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v}$.
Let $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}=(\boldsymbol{V},\{\boldsymbol{x y} \in \boldsymbol{E} \mid \boldsymbol{w}(\boldsymbol{x y})<\boldsymbol{w}(\boldsymbol{e})\})$.
Observe that $\boldsymbol{e} \notin \mathbf{E}\left(\boldsymbol{G}_{<\boldsymbol{w}(e)}\right)$.
(1) If $\boldsymbol{x}, \boldsymbol{y}$ in some connected component of $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}$, then $\boldsymbol{G}_{<\boldsymbol{w}(\boldsymbol{e})}+\boldsymbol{e}$ contains a cycle where \boldsymbol{e} is most expensive.
$\Longrightarrow \boldsymbol{e}$ is unsafe.
(2) If \boldsymbol{x} and \boldsymbol{y} are in diff connected component of $\boldsymbol{G}_{<w(e)}$,

Let \boldsymbol{S} the vertices of connected component of $\boldsymbol{G}_{<\boldsymbol{w}(e)}$ containing \boldsymbol{x}.
The edge \boldsymbol{e} is cheapest edge in cut ($\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S}$).
$\Longrightarrow e$ is safe.

Safe edge

Example...

Every cut identifies one safe edge...

...the cheapest edge in the cut.
Note: An edge \boldsymbol{e} may be a safe edge for many cuts!

Safe edge

Example...

Every cut identifies one safe edge...

...the cheapest edge in the cut.
Note: An edge \boldsymbol{e} may be a safe edge for many cuts!

Unsafe edge

Example...

Every cycle identifies one unsafe edge...

.the most expensive edge in the cycle.

Unsafe edge

Example...
Every cycle identifies one unsafe edge...

...the most expensive edge in the cycle.

Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...

Some key observations

Proofs later

Lemma 20.6.

If \boldsymbol{e} is a safe edge then every minimum spanning tree contains \boldsymbol{e}.

Lemma 20.7.

If \boldsymbol{e} is an unsafe edge then no MST of \boldsymbol{G} contains \boldsymbol{e}.

THE END

(for now)

Algorithms \& Models of Computation

20.3

The Algorithms for computing MST

Greedy Template

```
Initially E is the set of all edges in G
T}\mathrm{ is empty (* T will store edges of a MST *)
while E is not empty do
    choose e}\in
    remove e from E
        if (e satisfies condition)
            add e to T
return the set T
```

Main Task: In what order should edges be processed? When should we add edge to spanning tree?

Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to \boldsymbol{T} as long as they don't form a cycle.

Figure: Graph G

(2)

(5)

Figure: MST of \boldsymbol{G}

Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to \boldsymbol{T} as long as they don't form a cycle.

Figure: Graph G

Figure: MST of \boldsymbol{G}

Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to \boldsymbol{T} as long as they don't form a cycle.

Figure: Graph G

Figure: MST of \boldsymbol{G}

Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to \boldsymbol{T} as long as they don't form a cycle.

Figure: Graph G

Figure: MST of \boldsymbol{G}

Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to \boldsymbol{T} as long as they don't form a cycle.

Figure: Graph G

Figure: MST of \boldsymbol{G}

Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to \boldsymbol{T} as long as they don't form a cycle.

Figure: Graph G

Figure: MST of \boldsymbol{G}

Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to \boldsymbol{T} as long as they don't form a cycle.

Figure: Graph G

Figure: MST of \boldsymbol{G}

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Prim's Algorithm: Animation

\boldsymbol{T} maintained by algorithm will be a tree. Start with a node in \boldsymbol{T}. In each iteration, pick edge with least attachment cost to \boldsymbol{T}.

Reverse Delete Algorithm

```
Initially Z is the set of all edges in G
T}\Leftarrow\boldsymbol{Z}\mathrm{ (* T will store edges of a MST *)
while Z is not empty do
    choose e\inZ of largest cost
    remove e from Z
    if removing e does not disconnect }\boldsymbol{T}\mathrm{ then
        remove e from T
return the set T
```

Returns a minimum spanning tree.

Borůvka's Algorithm

Simplest to implement. See notes.
Assume \boldsymbol{G} is a connected graph.

```
\(\boldsymbol{T}\) is \(\emptyset\) (* \(\boldsymbol{T}\) will store edges of a MST *)
while \(\boldsymbol{T}\) is not spanning do
    \(X \leftarrow \emptyset\)
    for each connected component \(S\) of \(T\) do
        add to \(\boldsymbol{X}\) the cheapest edge between \(\boldsymbol{S}\) and \(\boldsymbol{V} \backslash \boldsymbol{S}\)
    Add edges in \(\boldsymbol{X}\) to \(\boldsymbol{T}\)
return the set \(\boldsymbol{T}\)
```


Borůvka's Algorithm

THE END

(for now)

Algorithms \& Models of Computation
CS/ECE 374, Fall 2020

20.4

Correctness of the MST algorithms

Algorithms \& Models of Computation CS/ECE 374, Fall 2020

20.4.1
 Safe edges must be in the MST

Correctness of MST Algorithms

(1) Many different MST algorithms
(2) All of them rely on some basic properties of MSTs, in particular the Cut Property to be seen shortly.

Key Observation: Cut Property

Lemma 20.1.

If \boldsymbol{e} is a safe edge then every minimum spanning tree contains \boldsymbol{e}.

```
Proof
(3) Suppose (for contradiction) e is not in MST T
(2) Since \boldsymbol{e}\mathrm{ is safe there is an S}\subset\mathbf{V}\mathrm{ such that }\boldsymbol{e}\mathrm{ is the unique min cost edge crossing}
3}\mathrm{ Since }\boldsymbol{T}\mathrm{ is connected, there must be some edge }\boldsymbol{f}\mathrm{ with one end in S and the other
```



```
    may not be a spanning tree!!
```


Key Observation: Cut Property

Lemma 20.1.

If \boldsymbol{e} is a safe edge then every minimum spanning tree contains \boldsymbol{e}.

Proof.

(1) Suppose (for contradiction) \boldsymbol{e} is not in MST \boldsymbol{T}.
(2) Since \boldsymbol{e} is safe there is an $\boldsymbol{S} \subset \boldsymbol{V}$ such that \boldsymbol{e} is the unique min cost edge crossing S.

- Since \boldsymbol{T} is connected, there must be some edge \boldsymbol{f} with one end in \boldsymbol{S} and the other in $\boldsymbol{V} \backslash \boldsymbol{S}$
(0) Since $\boldsymbol{c}_{\boldsymbol{f}}>\boldsymbol{c}_{\boldsymbol{e}}, \boldsymbol{T}^{\prime}=(\boldsymbol{T} \backslash\{\boldsymbol{f}\}) \cup\{\boldsymbol{e}\}$ is a spanning tree of lower cost! Error: T^{\prime} may not be a spanning tree!!

Key Observation: Cut Property

Lemma 20.1.

If \boldsymbol{e} is a safe edge then every minimum spanning tree contains \boldsymbol{e}.

Proof.

(1) Suppose (for contradiction) \boldsymbol{e} is not in MST \boldsymbol{T}.
(2) Since \boldsymbol{e} is safe there is an $\boldsymbol{S} \subset \boldsymbol{V}$ such that \boldsymbol{e} is the unique min cost edge crossing S.

- Since \boldsymbol{T} is connected, there must be some edge \boldsymbol{f} with one end in \boldsymbol{S} and the other in $\boldsymbol{V} \backslash \boldsymbol{S}$
(1) Since $\boldsymbol{c}_{\boldsymbol{f}}>\boldsymbol{c}_{\boldsymbol{e}}, \boldsymbol{T}^{\prime}=(\boldsymbol{T} \backslash\{\boldsymbol{f}\}) \cup\{\boldsymbol{e}\}$ is a spanning tree of lower cost! Error: \boldsymbol{T}^{\prime} may not be a spanning tree!!

Error in Proof: Example

Problematic example. $\mathbf{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{7}\}, \mathbf{e}=(\mathbf{7}, \mathbf{3}), \mathbf{f}=(\mathbf{1}, \mathbf{6}) . \mathbf{T}-\mathbf{f}+\mathbf{e}$ is not a spanning tree.

(A) Consider adding the edge \boldsymbol{f}.
(A)

Error in Proof: Example

Problematic example. $\mathbf{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{7}\}, \mathbf{e}=(\mathbf{7}, \mathbf{3}), \mathbf{f}=(\mathbf{1}, \mathbf{6}) . \mathbf{T}-\mathbf{f}+\mathbf{e}$ is not a spanning tree.

(A) Consider adding the edge \boldsymbol{f}.
(B) It is safe because it is the cheapest edge in the cut.
(B)

Error in Proof: Example

$$
\text { Problematic example. } \mathbf{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{7}\}, \mathbf{e}=(\mathbf{7}, \mathbf{3}), \mathbf{f}=(\mathbf{1}, \mathbf{6}) . \mathbf{T}-\mathbf{f}+\mathbf{e} \text { is not a spanning tree. }
$$

(A) Consider adding the edge \boldsymbol{f}.
(B) It is safe because it is the cheapest edge in the cut.
(C) Lets throw out the edge \boldsymbol{e} currently in the spanning tree which is more expensive than \boldsymbol{f} and is in the same cut. Put it \boldsymbol{f} instead...

Error in Proof: Example

Problematic example. $\mathbf{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{7}\}, \mathbf{e}=(\mathbf{7}, \mathbf{3}), \mathbf{f}=(\mathbf{1}, \mathbf{6}) . \mathbf{T}-\mathbf{f}+\mathbf{e}$ is not a spanning tree.

(A) Consider adding the edge \boldsymbol{f}.
(B) It is safe because it is the cheapest edge in the cut.
(C) Lets throw out the edge \boldsymbol{e} currently in the spanning tree which is more expensive than \boldsymbol{f} and is in the same cut. Put it \boldsymbol{f} instead...
(D) New graph of selected edges is not a tree anymore. BUG.

Proof of Cut Property

Proof.

(1) Suppose $\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w})$ is not in MST \boldsymbol{T} and \boldsymbol{e} is min weight edge in cut $(\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S})$. Assume $v \in S$.
(2) T is spanning tree: there is a unique path P from \boldsymbol{v} to \boldsymbol{w} in \boldsymbol{T}
(3) Let \boldsymbol{w}^{\prime} be the first vertex in P belonging to $\mathbf{V} \backslash S$; let v^{\prime} be the vertex just before it on P, and let $\boldsymbol{e}^{\prime}=\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right)$
(4) $\boldsymbol{T}^{\prime}=\left(\boldsymbol{T} \backslash\left\{\boldsymbol{e}^{\prime}\right\}\right) \cup\{\boldsymbol{e}\}$ is spanning tree of lower cost. (Why?)

Proof of Cut Property

Proof.

(1) Suppose $\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w})$ is not in MST \boldsymbol{T} and \boldsymbol{e} is min weight edge in cut $(\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S})$. Assume $v \in S$.
(2) \boldsymbol{T} is spanning tree: there is a unique path \boldsymbol{P} from \boldsymbol{v} to \boldsymbol{w} in \boldsymbol{T}
(3) Let w^{\prime} be the first vertex in \boldsymbol{P} belonging to $\boldsymbol{V} \backslash S$; let \boldsymbol{v}^{\prime} be the vertex just before it on \boldsymbol{P}, and let $\boldsymbol{e}^{\prime}=\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right)$
(다 $T^{\prime}=\left(T \backslash\left\{e^{\prime}\right\}\right) \cup\{e\}$ is spanning tree of lower cost. (Why?)

Proof of Cut Property

Proof.

(1) Suppose $\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w})$ is not in MST \boldsymbol{T} and \boldsymbol{e} is min weight edge in cut $(\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S})$. Assume $v \in S$.
(2) \boldsymbol{T} is spanning tree: there is a unique path \boldsymbol{P} from \boldsymbol{v} to \boldsymbol{w} in \boldsymbol{T}
(3) Let w^{\prime} be the first vertex in \boldsymbol{P} belonging to $\boldsymbol{V} \backslash S$; let \boldsymbol{v}^{\prime} be the vertex just before it on \boldsymbol{P}, and let $\boldsymbol{e}^{\prime}=\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right)$
(다 $T^{\prime}=\left(T \backslash\left\{e^{\prime}\right\}\right) \cup\{e\}$ is spanning tree of lower cost. (Why?)

Proof of Cut Property

Proof.

(1) Suppose $\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w})$ is not in MST \boldsymbol{T} and \boldsymbol{e} is min weight edge in cut ($\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S}$). Assume $v \in S$.
(2) \boldsymbol{T} is spanning tree: there is a unique path \boldsymbol{P} from \boldsymbol{v} to \boldsymbol{w} in \boldsymbol{T}
(3) Let \boldsymbol{w}^{\prime} be the first vertex in \boldsymbol{P} belonging to $\boldsymbol{V} \backslash \boldsymbol{S}$; let \boldsymbol{v}^{\prime} be the vertex just before it on \boldsymbol{P}, and let $\boldsymbol{e}^{\prime}=\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right)$

- $T^{\prime}=\left(T \backslash\left\{e^{\prime}\right\}\right) \cup\{e\}$ is spanning tree of lower cost. (Why?)

Proof of Cut Property

Proof.

(1) Suppose $\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w})$ is not in MST \boldsymbol{T} and \boldsymbol{e} is min weight edge in cut ($\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S}$). Assume $v \in S$.
(2) \boldsymbol{T} is spanning tree: there is a unique path \boldsymbol{P} from \boldsymbol{v} to \boldsymbol{w} in \boldsymbol{T}
(3) Let \boldsymbol{w}^{\prime} be the first vertex in \boldsymbol{P} belonging to $\boldsymbol{V} \backslash \boldsymbol{S}$; let \boldsymbol{v}^{\prime} be the vertex just before it on \boldsymbol{P}, and let $\boldsymbol{e}^{\prime}=\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right)$
(-) $T^{\prime}=\left(T \backslash\left\{e^{\prime}\right\}\right) \cup\{e\}$ is spanning tree of lower cost. (Why?)

Proof of Cut Property (contd)

Observation 20.2.
$\boldsymbol{T}^{\prime}=\left(\boldsymbol{T} \backslash\left\{\boldsymbol{e}^{\prime}\right\}\right) \cup\{\boldsymbol{e}\}$ is a spanning tree.
Proof.
\boldsymbol{T}^{\prime} is connected.
Removed $e^{\prime}=\left(v^{\prime}, w^{\prime}\right)$ from T but v^{\prime} and w^{\prime} are connected by the path
$P-f+e$ in T^{\prime}. Hence T^{\prime} is connected if T is.
T^{\prime} is a tree
\boldsymbol{T}^{\prime} is connected and has $n-\mathbf{1}$ edges (since T had $n-\mathbf{1}$ edges) and hence T^{\prime} is
a tree

Proof of Cut Property (contd)

Observation 20.2.
$\boldsymbol{T}^{\prime}=\left(\boldsymbol{T} \backslash\left\{\boldsymbol{e}^{\prime}\right\}\right) \cup\{\boldsymbol{e}\}$ is a spanning tree.

Proof.

T^{\prime} is connected.
Removed $\boldsymbol{e}^{\prime}=\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right)$ from \boldsymbol{T} but \boldsymbol{v}^{\prime} and \boldsymbol{w}^{\prime} are connected by the path $\boldsymbol{P}-\boldsymbol{f}+\boldsymbol{e}$ in \boldsymbol{T}^{\prime}. Hence \boldsymbol{T}^{\prime} is connected if \boldsymbol{T} is.
T^{\prime} is a tree
T^{\prime} is connected and has $n-1$ edges (since T had $n-1$ edges) and hence T^{\prime} is
a tree

Proof of Cut Property (contd)

Observation 20.2.

$\boldsymbol{T}^{\prime}=\left(\boldsymbol{T} \backslash\left\{\boldsymbol{e}^{\prime}\right\}\right) \cup\{\boldsymbol{e}\}$ is a spanning tree.

Proof.

T^{\prime} is connected.
Removed $\boldsymbol{e}^{\prime}=\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right)$ from \boldsymbol{T} but \boldsymbol{v}^{\prime} and \boldsymbol{w}^{\prime} are connected by the path
$\boldsymbol{P}-\boldsymbol{f}+\boldsymbol{e}$ in \boldsymbol{T}^{\prime}. Hence \boldsymbol{T}^{\prime} is connected if \boldsymbol{T} is.
T^{\prime} is a tree
\boldsymbol{T}^{\prime} is connected and has $\boldsymbol{n}-\mathbf{1}$ edges (since \boldsymbol{T} had $\boldsymbol{n}-\mathbf{1}$ edges) and hence \boldsymbol{T}^{\prime} is a tree

THE END

(for now)

Algorithms \& Models of Computation
CS/ECE 374, Fall 2020

20.4.2

The safe edges form the MST

Safe Edges form a connected graph

Lemma 20.3.

Let \boldsymbol{G} be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

Proof.

(1) Suppose not. Let \boldsymbol{S} be a connected component in the graph induced by the safe edges.
(2) Consider the edges crossing S, there must be a safe edge among them since edge costs are distinct and so we must have picked it.

Safe Edges do not contain a cycle

Lemma 20.4.

Let \boldsymbol{G} be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Proposition 20.5 : proved every edge in graph is either safe or unsafe. If \exists cycle, then by definition the most expensive edge in the cycle is unsafe. Contradiction.

Safe Edges do not contain a cycle

Lemma 20.4.

Let \boldsymbol{G} be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let $\boldsymbol{\pi}$ a cycle made of safe edges.
\boldsymbol{e} : Most expensive edge in the cycle $\boldsymbol{\pi}$.

\boldsymbol{f} : cheapest edge in $\pi \cap \mathcal{C}$.
eis noc themese aldes in Cl
A contradiction.

Safe Edges do not contain a cycle

Lemma 20.4.

Let \boldsymbol{G} be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let $\boldsymbol{\pi}$ a cycle made of safe edges.
\boldsymbol{e} : Most expensive edge in the cycle $\boldsymbol{\pi}$. $\mathcal{C}=(\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S}):$ Cut that \boldsymbol{e} is safe for.
π must have at least two edges in \mathcal{C}.
\boldsymbol{f} : cheapest edge in $\pi \cap \mathcal{C}$.
\boldsymbol{e} is not cheapest edge in \mathcal{C}
A contradiction.

Safe Edges do not contain a cycle

Lemma 20.4.

Let \boldsymbol{G} be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let $\boldsymbol{\pi}$ a cycle made of safe edges.
\boldsymbol{e} : Most expensive edge in the cycle $\boldsymbol{\pi}$. $\mathcal{C}=(\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S})$: Cut that \boldsymbol{e} is safe for. π must have at least two edges in \mathcal{C}.

Safe Edges do not contain a cycle

Lemma 20.4.

Let \boldsymbol{G} be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let $\boldsymbol{\pi}$ a cycle made of safe edges.
\boldsymbol{e} : Most expensive edge in the cycle $\boldsymbol{\pi}$. $\mathcal{C}=(\boldsymbol{S}, \boldsymbol{V} \backslash \boldsymbol{S}):$ Cut that \boldsymbol{e} is safe for. π must have at least two edges in \mathcal{C}.
\boldsymbol{f} : cheapest edge in $\boldsymbol{\pi} \cap \mathcal{C}$.
\boldsymbol{e} is not cheapest edge in \mathcal{C}.
A contradiction.

Safe Edges form an MST

Corollary 20.5.

Let \boldsymbol{G} be a connected graph with distinct edge costs, then set of safe edges form the unique MST of \boldsymbol{G}.

Consequence: Every correct MST algorithm when \boldsymbol{G} has unique edge costs includes exactly the safe edges

Safe Edges form an MST

Corollary 20.5.

Let \boldsymbol{G} be a connected graph with distinct edge costs, then set of safe edges form the unique MST of \boldsymbol{G}.

Consequence: Every correct MST algorithm when \boldsymbol{G} has unique edge costs includes exactly the safe edges.

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

20.4.3

The unsafe edges are NOT in the MST

Cycle Property

Lemma 20.6.

If \boldsymbol{e} is an unsafe edge then no MST of \boldsymbol{G} contains \boldsymbol{e}.

Cycle Property

Lemma 20.6.

If \boldsymbol{e} is an unsafe edge then no MST of \boldsymbol{G} contains \boldsymbol{e}.

```
Proof.
Exercise.
Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe definitions do not rely on distinct cost assumption.
```


THE END

(for now)

Algorithms \& Models of Computation
CS/ECE 374, Fall 2020

20.4.4

Correctness of the various MST algorithms

Correctness of Prim's Algorithm

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.
Proof of correctness.
(1) If \boldsymbol{e} is added to tree, then \boldsymbol{e} is safe and belongs to every MST.
(1) Let S be the vertices connected by edges in T when e is added
(2) \boldsymbol{e} is edge of lowest cost with one end in \boldsymbol{S} and the other in $\boldsymbol{V} \backslash \boldsymbol{S}$ and hence \boldsymbol{e} is safe.
(2) Set of edges output is a spanning tree
(1) Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually $\boldsymbol{S}=\boldsymbol{V}$
ค Only safe edges added and they do not have a cycle

Correctness of Prim's Algorithm

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

(1) If \boldsymbol{e} is added to tree, then \boldsymbol{e} is safe and belongs to every MST.
(1) Let \boldsymbol{S} be the vertices connected by edges in \boldsymbol{T} when \boldsymbol{e} is added.
(2) e is edge of lowest cost with one end in S and the other in $V \backslash S$ and hence e is safe.
(2) Set of edges output is a spanning tree
(1) Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually $\boldsymbol{S}=\boldsymbol{V}$
D. Only safe edges added and they do not have a cycle

Correctness of Prim's Algorithm

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

(1) If \boldsymbol{e} is added to tree, then \boldsymbol{e} is safe and belongs to every MST.
(1) Let \boldsymbol{S} be the vertices connected by edges in \boldsymbol{T} when \boldsymbol{e} is added.
(2) \boldsymbol{e} is edge of lowest cost with one end in \boldsymbol{S} and the other in $\boldsymbol{V} \backslash \boldsymbol{S}$ and hence \boldsymbol{e} is safe.
(2) Set of edges output is a spanning tree
(1) Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually $\boldsymbol{S}=\boldsymbol{V}$
(2) Only safe edges added and they do not have a cycle

Correctness of Prim's Algorithm

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

(1) If \boldsymbol{e} is added to tree, then \boldsymbol{e} is safe and belongs to every MST.
(1) Let \boldsymbol{S} be the vertices connected by edges in \boldsymbol{T} when \boldsymbol{e} is added.
(2) \boldsymbol{e} is edge of lowest cost with one end in \boldsymbol{S} and the other in $\boldsymbol{V} \backslash \boldsymbol{S}$ and hence \boldsymbol{e} is safe.
(2) Set of edges output is a spanning tree
(1) Set of edges output forms a connected graph: by induction, \boldsymbol{S} is connected in each iteration and eventually $\boldsymbol{S}=\boldsymbol{V}$.
(-) Only safe edges added and they do not have a cycle

Correctness of Prim's Algorithm

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

(1) If \boldsymbol{e} is added to tree, then \boldsymbol{e} is safe and belongs to every MST.
(1) Let \boldsymbol{S} be the vertices connected by edges in \boldsymbol{T} when \boldsymbol{e} is added.
(2) \boldsymbol{e} is edge of lowest cost with one end in \boldsymbol{S} and the other in $\boldsymbol{V} \backslash \boldsymbol{S}$ and hence \boldsymbol{e} is safe.
(2) Set of edges output is a spanning tree
(1) Set of edges output forms a connected graph: by induction, \boldsymbol{S} is connected in each iteration and eventually $\boldsymbol{S}=\boldsymbol{V}$.
(2) Only safe edges added and they do not have a cycle

Correctness of Kruskal's Algorithm

Kruskal's Algorithm
Pick edge of lowest cost and add if it does not form a cycle with existing edges.
Proof of correctness.
(1) If $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is added to tree, then \boldsymbol{e} is safe

(2) Set of edges output is a spanning tree : exercise

Correctness of Kruskal's Algorithm

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

(1) If $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is added to tree, then \boldsymbol{e} is safe
(1) When algorithm adds \boldsymbol{e} let \boldsymbol{S} and \boldsymbol{S}^{\prime} be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively
(3) e is the lowest cost edge crossing S (and also S^{\prime})
(3) If there is an edge \boldsymbol{e}^{\prime} crossing \boldsymbol{S} and has lower cost than \boldsymbol{e}, then \boldsymbol{e}^{\prime} would come before \boldsymbol{e} in the sorted order and would be added by the algorithm to \boldsymbol{T}
(2) Set of edges output is a spanning tree : exercise

Correctness of Kruskal's Algorithm

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

(1) If $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is added to tree, then \boldsymbol{e} is safe
(1) When algorithm adds \boldsymbol{e} let \boldsymbol{S} and \boldsymbol{S}^{\prime} be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively
(2) \boldsymbol{e} is the lowest cost edge crossing \boldsymbol{S} (and also \boldsymbol{S}^{\prime}).
(3) If there is an edge e^{\prime} crossing S and has lower cost than e, then e^{\prime} would come before e in the sorted order and would be added by the algorithm to T
(2) Set of edges output is a spanning tree : exercise

Correctness of Kruskal's Algorithm

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

(1) If $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is added to tree, then \boldsymbol{e} is safe
(1) When algorithm adds \boldsymbol{e} let \boldsymbol{S} and \boldsymbol{S}^{\prime} be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively
(2) \boldsymbol{e} is the lowest cost edge crossing \boldsymbol{S} (and also \boldsymbol{S}^{\prime}).
(3) If there is an edge \boldsymbol{e}^{\prime} crossing \boldsymbol{S} and has lower cost than \boldsymbol{e}, then \boldsymbol{e}^{\prime} would come before \boldsymbol{e} in the sorted order and would be added by the algorithm to \boldsymbol{T}
(2) Set of edges output is a spanning tree : exercise

Correctness of Borůvka's Algorithm

Proof of correctness.
Argue that only safe edges are added.

Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm

Consider edges in decreasing cost and remove an edge if it does not disconnect the graph

Proof of correctness.
Argue that only unsafe edges are removed.

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

20.5

MST algorithm for negative weights, and non-distinct costs

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties
(a) $\boldsymbol{e}_{j} \prec \boldsymbol{e}_{j}$ if either $\boldsymbol{c}\left(\boldsymbol{e}_{j}\right)<\boldsymbol{c}\left(\boldsymbol{e}_{j}\right)$ or $\left(\boldsymbol{c}\left(\boldsymbol{e}_{j}\right)=\boldsymbol{c}\left(\boldsymbol{e}_{j}\right)\right.$ and $\left.\boldsymbol{i}<j\right)$
(2) Lexicographic ordering extends to sets of edges. If $A, B \subseteq E, A \neq B$ then $\boldsymbol{A} \prec \boldsymbol{B}$ if either $\boldsymbol{c}(\boldsymbol{A})<\boldsymbol{c}(\boldsymbol{B})$ or $(\boldsymbol{c}(\boldsymbol{A})=\boldsymbol{c}(\boldsymbol{B})$ and $\boldsymbol{A} \backslash \boldsymbol{B}$ has a lower indexed edge than $\boldsymbol{B} \backslash \boldsymbol{A}$).
(3) Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties
(1) $\boldsymbol{e}_{\boldsymbol{i}} \prec \boldsymbol{e}_{\boldsymbol{j}}$ if either $\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)<\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{j}}\right)$ or $\left(\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{j}}\right)\right.$ and $\left.\boldsymbol{i}<\boldsymbol{j}\right)$
(2) Lexicographic ordering extends to sets of edges. If $\boldsymbol{A}, \boldsymbol{B} \subseteq \boldsymbol{E}, \boldsymbol{A} \neq \boldsymbol{B}$ then $\boldsymbol{A} \prec \boldsymbol{B}$ if either $\boldsymbol{c}(\boldsymbol{A})<\boldsymbol{c}(\boldsymbol{B})$ or $(\boldsymbol{c}(\boldsymbol{A})=\boldsymbol{c}(\boldsymbol{B})$ and $\boldsymbol{A} \backslash \boldsymbol{B}$ has a lower indexed edge than $\boldsymbol{B} \backslash \boldsymbol{A}$).
(Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.
Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties
(1) $\boldsymbol{e}_{\boldsymbol{i}} \prec \boldsymbol{e}_{\boldsymbol{j}}$ if either $\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)<\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{j}}\right)$ or $\left(\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{j}}\right)\right.$ and $\left.\boldsymbol{i}<\boldsymbol{j}\right)$
(2) Lexicographic ordering extends to sets of edges. If $\boldsymbol{A}, \boldsymbol{B} \subseteq \boldsymbol{E}, \boldsymbol{A} \neq \boldsymbol{B}$ then $\boldsymbol{A} \prec \boldsymbol{B}$ if either $\boldsymbol{c}(\boldsymbol{A})<\boldsymbol{c}(\boldsymbol{B})$ or $(\boldsymbol{c}(\boldsymbol{A})=\boldsymbol{c}(\boldsymbol{B})$ and $\boldsymbol{A} \backslash \boldsymbol{B}$ has a lower indexed edge than $\boldsymbol{B} \backslash \boldsymbol{A}$).
(Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.
Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties
(1) $\boldsymbol{e}_{\boldsymbol{i}} \prec \boldsymbol{e}_{\boldsymbol{j}}$ if either $\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)<\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{j}}\right)$ or $\left(\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=\boldsymbol{c}\left(\boldsymbol{e}_{\boldsymbol{j}}\right)\right.$ and $\left.\boldsymbol{i}<\boldsymbol{j}\right)$
(2) Lexicographic ordering extends to sets of edges. If $\boldsymbol{A}, \boldsymbol{B} \subseteq \boldsymbol{E}, \boldsymbol{A} \neq \boldsymbol{B}$ then $\boldsymbol{A} \prec \boldsymbol{B}$ if either $\boldsymbol{c}(\boldsymbol{A})<\boldsymbol{c}(\boldsymbol{B})$ or $(\boldsymbol{c}(\boldsymbol{A})=\boldsymbol{c}(\boldsymbol{B})$ and $\boldsymbol{A} \backslash \boldsymbol{B}$ has a lower indexed edge than $\boldsymbol{B} \backslash \boldsymbol{A}$).
(Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.
Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

Edge Costs: Positive and Negative

(1) Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
(2) Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
(3) Can compute maximum weight spanning tree by negating edge costs and then computing an MST.
Question: Why does this not work for shortest paths?

Edge Costs: Positive and Negative

(1) Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
(2) Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
(3) Can compute maximum weight spanning tree by negating edge costs and then computing an MST.
Question: Why does this not work for shortest paths?

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

20.6
 Data Structures for MST: Priority Queues and Union-Find

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

20.6.1
 Implementing Borůvka's Algorithm

Implementing Borůvka's Algorithm

No complex data structure needed.

```
\(\boldsymbol{T}\) is \(\emptyset\) (* \(\boldsymbol{T}\) will store edges of a MST *)
while \(\boldsymbol{T}\) is not spanning do
    \(\boldsymbol{X} \leftarrow \emptyset\)
    for each connected component \(S\) of \(T\) do
        add to \(\boldsymbol{X}\) the cheapest edge between \(\boldsymbol{S}\) and \(\boldsymbol{V} \backslash \boldsymbol{S}\)
    Add edges in \(\boldsymbol{X}\) to \(\boldsymbol{T}\)
return the set \(\boldsymbol{T}\)
```

- $\boldsymbol{O}(\log \boldsymbol{n})$ iterations of while loop. Why? Number of connected components shrink by at least half since each component merges with one or more other components. - Each iteration can be implemented in $\boldsymbol{O}(\boldsymbol{m})$ time. Running time: $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ time

Implementing Borůvka's Algorithm

No complex data structure needed.

```
\(\boldsymbol{T}\) is \(\emptyset\) (* \(\boldsymbol{T}\) will store edges of a MST *)
while \(\boldsymbol{T}\) is not spanning do
    \(\boldsymbol{X} \leftarrow \emptyset\)
    for each connected component \(S\) of \(T\) do
        add to \(\boldsymbol{X}\) the cheapest edge between \(\boldsymbol{S}\) and \(\boldsymbol{V} \backslash \boldsymbol{S}\)
    Add edges in \(\boldsymbol{X}\) to \(\boldsymbol{T}\)
return the set \(\boldsymbol{T}\)
```

- $\boldsymbol{O}(\log \boldsymbol{n})$ iterations of while loop. Why? Number of connected components shrink by at least half since each component merges with one or more other components.
- Each iteration can be implemented in $\boldsymbol{O}(\boldsymbol{m})$ time.

Running time: $O(m \log n)$ time.

Implementing Borůvka's Algorithm

No complex data structure needed.

```
\(\boldsymbol{T}\) is \(\emptyset\) (* \(\boldsymbol{T}\) will store edges of a MST *)
while \(\boldsymbol{T}\) is not spanning do
    \(\boldsymbol{X} \leftarrow \emptyset\)
    for each connected component \(S\) of \(\boldsymbol{T}\) do
        add to \(\boldsymbol{X}\) the cheapest edge between \(\boldsymbol{S}\) and \(\boldsymbol{V} \backslash \boldsymbol{S}\)
    Add edges in \(\boldsymbol{X}\) to \(\boldsymbol{T}\)
return the set \(\boldsymbol{T}\)
```

- $\boldsymbol{O}(\log \boldsymbol{n})$ iterations of while loop. Why? Number of connected components shrink by at least half since each component merges with one or more other components.
- Each iteration can be implemented in $\boldsymbol{O}(\boldsymbol{m})$ time.

Running time: $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ time.

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

20.6.2
 Implementing Prim's Algorithm

Implementing Prim's Algorithm

Implementing Prim's Algorithm

```
Prim_ComputeMST
    \(\boldsymbol{E}\) is the set of all edges in \(\boldsymbol{G}\)
    \(S=\{1\}\)
    \(\boldsymbol{T}\) is empty (* \(\boldsymbol{T}\) will store edges of a MST *)
    while \(S \neq V\) do
        pick \(\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{E}\) such that
            \(\boldsymbol{v} \in \boldsymbol{S}\) and \(\boldsymbol{w} \in \boldsymbol{V} \backslash \boldsymbol{S}\)
            \(\boldsymbol{e}\) has minimum cost
        \(\boldsymbol{T}=\boldsymbol{T} \cup \boldsymbol{e}\)
        \(\boldsymbol{S}=\boldsymbol{S} \cup \boldsymbol{w}\)
    return the set \(T\)
```

Analysis
(1) Number of iterations $=O(n)$, where n is number of vertices
(2) Picking \boldsymbol{e} is $\boldsymbol{O}(\boldsymbol{m})$ where \boldsymbol{m} is the number of edges
(3) Total time $\boldsymbol{O}(\mathrm{nm})$

Implementing Prim's Algorithm

Implementing Prim's Algorithm

```
Prim_ComputeMST
    \(\boldsymbol{E}\) is the set of all edges in \(\boldsymbol{G}\)
    \(S=\{1\}\)
    \(\boldsymbol{T}\) is empty (* \(\boldsymbol{T}\) will store edges of a MST *)
    while \(S \neq V\) do
        pick \(\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{E}\) such that
            \(\boldsymbol{v} \in \boldsymbol{S}\) and \(\boldsymbol{w} \in \boldsymbol{V} \backslash \boldsymbol{S}\)
            \(\boldsymbol{e}\) has minimum cost
        \(\boldsymbol{T}=\boldsymbol{T} \cup \boldsymbol{e}\)
        \(S=S \cup w\)
    return the set \(T\)
```

Analysis
(1) Number of iterations $=\boldsymbol{O}(\boldsymbol{n})$, where \boldsymbol{n} is number of vertices
(3) Picking e is $O(m)$ where m is the number of edges
(3) Total time $\mathbf{O}(\mathbf{n m})$

Implementing Prim's Algorithm

Implementing Prim's Algorithm

```
Prim_ComputeMST
    \(\boldsymbol{E}\) is the set of all edges in \(\boldsymbol{G}\)
    \(S=\{1\}\)
    \(\boldsymbol{T}\) is empty (* \(\boldsymbol{T}\) will store edges of a MST *)
    while \(S \neq V\) do
        pick \(\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{E}\) such that
            \(\boldsymbol{v} \in \boldsymbol{S}\) and \(\boldsymbol{w} \in \boldsymbol{V} \backslash \boldsymbol{S}\)
            \(\boldsymbol{e}\) has minimum cost
        \(\boldsymbol{T}=\boldsymbol{T} \cup \boldsymbol{e}\)
        \(S=S \cup w\)
    return the set \(T\)
```

Analysis
(1) Number of iterations $=\boldsymbol{O}(\boldsymbol{n})$, where \boldsymbol{n} is number of vertices
(2) Picking \boldsymbol{e} is $\boldsymbol{O}(\boldsymbol{m})$ where \boldsymbol{m} is the number of edges
(3) Total time $\mathrm{O}(\mathrm{nm})$

Implementing Prim's Algorithm

Implementing Prim's Algorithm

```
Prim_ComputeMST
    \(\boldsymbol{E}\) is the set of all edges in \(\boldsymbol{G}\)
    \(S=\{1\}\)
    \(\boldsymbol{T}\) is empty (* \(\boldsymbol{T}\) will store edges of a MST *)
    while \(S \neq V\) do
        pick \(\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{E}\) such that
            \(\boldsymbol{v} \in \boldsymbol{S}\) and \(\boldsymbol{w} \in \boldsymbol{V} \backslash \boldsymbol{S}\)
            \(\boldsymbol{e}\) has minimum cost
        \(\boldsymbol{T}=\boldsymbol{T} \cup \boldsymbol{e}\)
        \(\boldsymbol{S}=\boldsymbol{S} \cup \boldsymbol{w}\)
    return the set \(T\)
```

Analysis
(1) Number of iterations $=\boldsymbol{O}(\boldsymbol{n})$, where \boldsymbol{n} is number of vertices
(2) Picking \boldsymbol{e} is $\boldsymbol{O}(\boldsymbol{m})$ where \boldsymbol{m} is the number of edges
(3) Total time $\boldsymbol{O}(\boldsymbol{n m})$

Making Prim's Algorithm Great Again

By making it look like Dijkstra's algorithm

// $\boldsymbol{c}(\boldsymbol{e})$: Cost of the edge \boldsymbol{e}

```
Prim_ComputeMSTv1
    \(\boldsymbol{E}\) is the set of all edges in \(\boldsymbol{G}\)
    \(S \leftarrow\{1\}\)
    \(\boldsymbol{T}\) is empty
    (* \(\boldsymbol{T}\) will store edges of a MST *)
    for \(v \notin S, d(v)=\min _{x \in S} c(x v)\)
    for \(\boldsymbol{v} \notin S, \boldsymbol{p}(\boldsymbol{v})=\arg \min _{x \in S} \boldsymbol{c}(\boldsymbol{x v})\)
    while \(S \neq V\) do
        pick \(\boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}\) with minimum \(\boldsymbol{d}(\boldsymbol{v})\)
        \(e \leftarrow v p(v)\)
        \(T \leftarrow T \cup\{e\}\)
        \(S \leftarrow S \cup\{v\}\)
        update arrays \(\boldsymbol{d}\) and \(\boldsymbol{p}\)
    return the set \(\boldsymbol{T}\)
```


Making Prim's Algorithm Great Again

By making it look like Dijkstra's algorithm
// $\boldsymbol{c}(\boldsymbol{e})$: Cost of the edge \boldsymbol{e}

```
Prim_ComputeMSTv1
    \(\boldsymbol{E}\) is the set of all edges in \(\boldsymbol{G}\)
    \(S \leftarrow\{1\}\)
    \(\boldsymbol{T}\) is empty
    (* \(\boldsymbol{T}\) will store edges of a MST *)
    for \(v \notin S, d(v)=\min _{x \in S} \boldsymbol{c}(x v)\)
    for \(\boldsymbol{v} \notin S, \boldsymbol{p}(\boldsymbol{v})=\arg \min _{x \in S} \boldsymbol{c}(\boldsymbol{x v})\)
    while \(S \neq V\) do
        pick \(\boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}\) with minimum \(\boldsymbol{d}(\boldsymbol{v})\)
        \(e \leftarrow v p(v)\)
        \(T \leftarrow T \cup\{e\}\)
        \(S \leftarrow S \cup\{v\}\)
        update arrays \(\boldsymbol{d}\) and \(\boldsymbol{p}\)
    \(T \leftarrow \emptyset, S \leftarrow \emptyset, s=1\)
    \(\forall \boldsymbol{v} \in \mathrm{V}(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty\)
    \(\forall \boldsymbol{v} \in \mathrm{V}(\boldsymbol{G}): \boldsymbol{p}(\boldsymbol{v}) \leftarrow \mathrm{Nil}\)
    \(d(s) \leftarrow 0\)
    while \(S \neq V\) do
        pick \(\boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}\) with minimum \(\boldsymbol{d}(\boldsymbol{v})\)
        \(e \leftarrow v p(v)\)
        \(\boldsymbol{T} \leftarrow \boldsymbol{T} \cup\{e\}\)
        \(S \leftarrow S \cup\{v\}\)
        update arrays \(\boldsymbol{d}\) and \(\boldsymbol{p}\)
    return T
```


Prim_ComputeMSTv2

 return the set \(\boldsymbol{T}\)

Making Prim's Algorithm Great Again

By making it look like Dijkstra's algorithm

// $\boldsymbol{c}(\boldsymbol{e})$: Cost of the edge \boldsymbol{e}

```
Prim_ComputeMSTv2
    \(T \leftarrow \emptyset, S \leftarrow \emptyset, s=1\)
    \(\forall \boldsymbol{v} \in \mathrm{V}(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty\)
    \(\forall \boldsymbol{v} \in \mathrm{V}(\boldsymbol{G}): \boldsymbol{p}(\boldsymbol{v}) \leftarrow \mathrm{Nil}\)
    \(d(s) \leftarrow 0\)
    while \(S \neq V\) do
        pick \(\boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}\) with minimum \(\boldsymbol{d}(\boldsymbol{v})\)
        \(e \leftarrow v p(v)\)
        \(T \leftarrow T \cup\{e\}\)
        \(\boldsymbol{S} \leftarrow \boldsymbol{S} \cup\{\boldsymbol{v}\}\)
        update arrays \(\boldsymbol{d}\) and \(\boldsymbol{p}\)
    return T
```

```
Prim_ComputeMSTv3
    \(T \leftarrow \emptyset, S \leftarrow \emptyset, s=1\)
    \(\forall \boldsymbol{v} \in \mathrm{V}(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty, \boldsymbol{p}(\boldsymbol{v}) \leftarrow \mathrm{Nil}\)
    \(\boldsymbol{d}(\boldsymbol{s}) \leftarrow \mathbf{0}\)
    while \(S \neq V\) do
        \(\boldsymbol{v} \leftarrow \arg \min _{\boldsymbol{u} \in \boldsymbol{V} \backslash \boldsymbol{S}} \boldsymbol{d}(\boldsymbol{u})\)
        \(T \leftarrow T \cup\{v p(v)\}\)
        \(S \leftarrow S \cup\{v\}\)
        for each \(\boldsymbol{u}\) in \(\operatorname{Adj}(v)\) do
            \(d(u) \leftarrow \min \left\{\begin{array}{l}d(\boldsymbol{u}) \\ \boldsymbol{c}(\boldsymbol{v u})\end{array}\right.\)
        if \(\boldsymbol{d}(\boldsymbol{u})=\boldsymbol{c}(\boldsymbol{v u})\) then
        \(\boldsymbol{p}(\boldsymbol{u}) \leftarrow v\)
    return \(T\)
```


Making Prim's Algorithm Great Again

By making it look like Dijkstra's algorithm

// $\boldsymbol{c}(\boldsymbol{e})$: Cost of the edge \boldsymbol{e}

Prim_ComputeMSTv3

$\bar{T} \leftarrow \emptyset, S \leftarrow \emptyset, s=1$
$\forall \boldsymbol{v} \in \mathrm{V}(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \boldsymbol{\infty}, \boldsymbol{p}(\boldsymbol{v}) \leftarrow \mathrm{Nil}$ $\boldsymbol{d}(\boldsymbol{s}) \leftarrow 0$
while $S \neq V$ do

$$
\boldsymbol{v} \leftarrow \arg \min _{\boldsymbol{u} \in \boldsymbol{v} \backslash S} \boldsymbol{d}(\boldsymbol{u})
$$

$$
\boldsymbol{T} \leftarrow T \cup\{v p(v)\}
$$

$$
S \leftarrow S \cup\{v\}
$$

$$
\text { for each } u \text { in } \operatorname{Adj}(v) \text { do }
$$

$$
d(u) \leftarrow \min \left\{\begin{array}{l}
d(u) \\
c(v u)
\end{array}\right.
$$

$$
\text { if } d(u)=c(v u) \text { then }
$$

$$
p(u) \leftarrow v
$$

return T
$\operatorname{Dijkstra}(\boldsymbol{G}, \boldsymbol{s})$:
$\forall \boldsymbol{v} \in \mathrm{V}(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty, \boldsymbol{p}(\boldsymbol{v}) \leftarrow \mathrm{Nil}$ $S \leftarrow \emptyset, d(s) \leftarrow 0$ while $S \neq V$ do
$\boldsymbol{v} \leftarrow \arg \min _{\boldsymbol{u} \in \boldsymbol{V} \backslash \boldsymbol{S}} \boldsymbol{d}(\boldsymbol{u})$
$S \leftarrow S \cup\{v\}$
for each u in $\operatorname{Adj}(v)$ do
$d(u) \leftarrow \min \left\{\begin{array}{l}d(\boldsymbol{u}) \\ d(\boldsymbol{v})+\ell(v, u)\end{array}\right.$
if $d(u)=d(v)+\ell(v, u)$ then $\boldsymbol{p}(\boldsymbol{u}) \leftarrow \boldsymbol{v}$
return $d(V)$

Making Prim's Algorithm Great Again

By making it look like Dijkstra's algorithm

// $\boldsymbol{c}(\boldsymbol{e})$: Cost of the edge \boldsymbol{e}

$$
\begin{aligned}
& \text { Prim_ComputeMSTv3 } \\
& \begin{array}{l}
\boldsymbol{T} \leftarrow \emptyset, S \leftarrow \emptyset, \boldsymbol{s}=\mathbf{1} \\
\forall v \in V(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty, \boldsymbol{p}(\boldsymbol{v}) \leftarrow \mathrm{Nil} \\
\boldsymbol{d}(\boldsymbol{s}) \leftarrow \mathbf{0} \\
\text { while } \boldsymbol{S} \neq \boldsymbol{v} \text { do } \\
\boldsymbol{v} \leftarrow \arg \min _{u \in \boldsymbol{v} \backslash \boldsymbol{S}} \boldsymbol{d}(\boldsymbol{u}) \\
\boldsymbol{T} \leftarrow \boldsymbol{T} \cup\{v \boldsymbol{v}(\boldsymbol{v})\} \\
\boldsymbol{S} \leftarrow \boldsymbol{S} \cup\{\boldsymbol{v}\} \\
\text { for each } \boldsymbol{u} \text { in } \operatorname{Adj}(\boldsymbol{v}) \text { do } \\
\boldsymbol{d}(\boldsymbol{u}) \leftarrow \min \left\{\begin{array}{l}
\boldsymbol{d}(\boldsymbol{u}) \\
\boldsymbol{c}(\boldsymbol{v u})
\end{array}\right. \\
\text { if } \boldsymbol{d}(\boldsymbol{u})=\boldsymbol{c}(\boldsymbol{v u}) \text { then } \\
\text { return } \boldsymbol{T} \quad \boldsymbol{p}(\boldsymbol{u}) \leftarrow \boldsymbol{v}
\end{array}
\end{aligned}
$$

$\operatorname{Dijkstra}(G, s):$

$$
\forall \boldsymbol{v} \in \mathrm{V}(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty, \boldsymbol{p}(\boldsymbol{v}) \leftarrow \mathrm{Nil}
$$

$$
S \leftarrow \emptyset, \quad d(s) \leftarrow \mathbf{0}
$$

while $S \neq V$ do

$$
\begin{aligned}
& \boldsymbol{v} \leftarrow \arg \min _{\boldsymbol{u} \in \boldsymbol{V} \backslash \boldsymbol{S}} \boldsymbol{d}(\boldsymbol{u}) \\
& \boldsymbol{S} \leftarrow \boldsymbol{S} \cup\{\boldsymbol{v}\} \\
& \text { for each } \boldsymbol{u} \text { in } \operatorname{Adj}(\boldsymbol{v}) \text { do }
\end{aligned}
$$

$$
d(u) \leftarrow \min \left\{\begin{array}{l}
d(\boldsymbol{u}) \\
d(v)+\ell(v, u)
\end{array}\right.
$$

$$
\text { if } d(u)=d(v)+\ell(v, u) \text { then }
$$

$$
p(u) \leftarrow v
$$

return $\boldsymbol{d}(\boldsymbol{V})$

Prim's algorithm is essentially Dijkstra's algorithm!

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

20.6.3
 Implementing Prim's algorithm with priority

 queues
Priority Queues

Data structure to store a set \boldsymbol{S} of \boldsymbol{n} elements where each element $\boldsymbol{v} \in \boldsymbol{S}$ has an associated real/integer key $\boldsymbol{k}(\boldsymbol{v})$ such that the following operations
(3) makeQ: create an empty queue
(2) findMin: find the minimum key in S
(0) extractMin: Remove $\boldsymbol{v} \in \boldsymbol{S}$ with smallest key and return it
($\operatorname{add}(\boldsymbol{v}, \boldsymbol{k}(\boldsymbol{v}))$: Add new element \boldsymbol{v} with key $\boldsymbol{k}(\boldsymbol{v})$ to \boldsymbol{S}
(0) Delete($\mathbf{v})$: Remove element \boldsymbol{v} from \boldsymbol{S}
(0) decreaseKey $\left(\boldsymbol{v}, \boldsymbol{k}^{\prime}(\boldsymbol{v})\right.$): decrease key of \boldsymbol{v} from $\boldsymbol{k}(\boldsymbol{v})$ (current key) to $\boldsymbol{k}^{\prime}(\boldsymbol{v})$ (new key). Assumption: $\boldsymbol{k}^{\prime}(\boldsymbol{v}) \leq \boldsymbol{k}(\boldsymbol{v})$
(0) meld: merge two separate priority queues into one

Prim's using priority queues

$$
\begin{aligned}
& \text { Prim_ComputeMSTv3 } \\
& \begin{array}{l}
\boldsymbol{T} \leftarrow \emptyset, \boldsymbol{S} \leftarrow \emptyset, \boldsymbol{s} \leftarrow \mathbf{1} \\
\forall v \in V(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty, \boldsymbol{p}(\boldsymbol{v}) \leftarrow \text { Nil } \\
\boldsymbol{d}(\mathbf{s}) \leftarrow \mathbf{0} \\
\text { while } \boldsymbol{S} \neq \boldsymbol{v} \text { do } \\
\boldsymbol{v}=\arg \min _{u \in \boldsymbol{v} \backslash \boldsymbol{s}} \boldsymbol{d}(\boldsymbol{u}) \\
\boldsymbol{T}=\boldsymbol{T} \cup\{\boldsymbol{v}(\boldsymbol{v})\} \\
\boldsymbol{S}=\boldsymbol{S} \cup\{\boldsymbol{v}\} \\
\text { for each } \boldsymbol{u} \text { in } \operatorname{Adj}(\boldsymbol{v}) \text { do } \\
\boldsymbol{d}(\boldsymbol{u}) \leftarrow \min \left\{\begin{array}{l}
\boldsymbol{d}(\boldsymbol{u}) \\
\boldsymbol{c}(\boldsymbol{v} \boldsymbol{u})
\end{array}\right. \\
\text { if } \boldsymbol{d}(\boldsymbol{u})=\boldsymbol{c}(\boldsymbol{v u}) \text { then } \\
\boldsymbol{p}(\boldsymbol{u}) \leftarrow \boldsymbol{v}
\end{array} \\
& \text { return } \boldsymbol{T} \quad
\end{aligned}
$$

Maintain vertices in $\boldsymbol{V} \backslash \boldsymbol{S}$ in a priority queue with key $\boldsymbol{d}(\boldsymbol{v})$
(1) Requires $O(n)$ extractMin operations
(2) Requires $\boldsymbol{O}(\boldsymbol{m})$ decreaseKey operations

Prim's using priority queues

$$
\begin{aligned}
& \text { Prim_ComputeMSTv3 } \\
& \begin{array}{l}
\boldsymbol{T} \leftarrow \emptyset, \boldsymbol{S} \leftarrow \emptyset, \boldsymbol{s} \leftarrow \mathbf{1} \\
\forall v \in V(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty, \boldsymbol{p}(\boldsymbol{v}) \leftarrow \text { Nil } \\
\boldsymbol{d}(\boldsymbol{s}) \leftarrow \mathbf{0} \\
\text { while } \boldsymbol{S} \neq \boldsymbol{v} \text { do } \\
\boldsymbol{v}=\arg \min _{u \in \boldsymbol{v} \backslash \boldsymbol{S}} \boldsymbol{d}(\boldsymbol{u}) \\
\boldsymbol{T}=\boldsymbol{T} \cup\{v \boldsymbol{v}(\boldsymbol{v})\} \\
\boldsymbol{S}=\boldsymbol{S} \cup\{\boldsymbol{v}\} \\
\text { for each } \boldsymbol{u} \text { in } \operatorname{Adj}(\boldsymbol{v}) \text { do } \\
\boldsymbol{d}(\boldsymbol{u}) \leftarrow \min \left\{\begin{array}{l}
\boldsymbol{d}(\boldsymbol{u}) \\
\boldsymbol{c}(\boldsymbol{v} \boldsymbol{u})
\end{array}\right. \\
\text { if } \boldsymbol{d}(\boldsymbol{u})=\boldsymbol{c}(\boldsymbol{v u}) \text { then } \\
\boldsymbol{p}(\boldsymbol{u}) \leftarrow \boldsymbol{v}
\end{array} \\
& \text { return } \boldsymbol{T} \quad
\end{aligned}
$$

Maintain vertices in $\boldsymbol{V} \backslash \boldsymbol{S}$ in a priority queue with key $\boldsymbol{d}(\boldsymbol{v})$
(1) Requires $\boldsymbol{O}(n)$ extractMin operations

Prim's using priority queues

$$
\begin{aligned}
& \text { Prim_ComputeMSTv3 } \\
& \begin{array}{l}
\boldsymbol{T} \leftarrow \emptyset, \boldsymbol{S} \leftarrow \emptyset, \boldsymbol{s} \leftarrow \mathbf{1} \\
\forall v \in V(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v}) \leftarrow \infty, \boldsymbol{p}(\boldsymbol{v}) \leftarrow \text { Nil } \\
\boldsymbol{d}(\boldsymbol{s}) \leftarrow \mathbf{0} \\
\text { while } \boldsymbol{S} \neq \boldsymbol{v} \text { do } \\
\boldsymbol{v}=\arg \min _{u \in \boldsymbol{v} \backslash S} \boldsymbol{d}(\boldsymbol{u}) \\
\boldsymbol{T}=\boldsymbol{T} \cup\{\boldsymbol{v}(\boldsymbol{v})\} \\
\boldsymbol{S}=\boldsymbol{S} \cup\{\boldsymbol{v}\} \\
\text { for each } \boldsymbol{u} \text { in } \operatorname{Adj}(\boldsymbol{v}) \text { do } \\
\boldsymbol{d}(\boldsymbol{u}) \leftarrow \min \left\{\begin{array}{l}
\boldsymbol{d}(\boldsymbol{u}) \\
\boldsymbol{c}(\boldsymbol{v} \boldsymbol{u})
\end{array}\right. \\
\text { if } \boldsymbol{d}(\boldsymbol{u})=\boldsymbol{c}(\boldsymbol{v u}) \text { then } \\
\boldsymbol{p}(\boldsymbol{u}) \leftarrow \boldsymbol{v}
\end{array} \\
& \text { return } \boldsymbol{T} \quad
\end{aligned}
$$

Maintain vertices in $\boldsymbol{V} \backslash \boldsymbol{S}$ in a priority queue with key $\boldsymbol{d}(\boldsymbol{v})$
(1) Requires $\boldsymbol{O}(\boldsymbol{n})$ extractMin operations
(2) Requires $\boldsymbol{O}(\boldsymbol{m})$ decreaseKey operations

Running time of Prim's Algorithm

$\boldsymbol{O}(\boldsymbol{n})$ extractMin operations and $\boldsymbol{O}(\boldsymbol{m})$ decreaseKey operations
(1) Using standard Heaps, extractMin and decreaseKey take $\boldsymbol{O}(\log \boldsymbol{n})$ time. Total: $\boldsymbol{O}((\boldsymbol{m}+\boldsymbol{n}) \log \boldsymbol{n})$
(2) Using Fibonacci Heaps, $\boldsymbol{O}(\log n)$ for extractMin and $\boldsymbol{O}(1)$ (amortized) for decreaseKey. Total: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$.
(3) Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?
(9) Prim's algorithm $=$ Dijkstra where length of a path π is the weight of the heaviest edge in π. (Bottleneck shortest path.)

Running time of Prim's Algorithm

$\boldsymbol{O}(\boldsymbol{n})$ extractMin operations and $\boldsymbol{O}(\boldsymbol{m})$ decreaseKey operations
(1) Using standard Heaps, extractMin and decreaseKey take $\boldsymbol{O}(\log \boldsymbol{n})$ time. Total: $\boldsymbol{O}((\boldsymbol{m}+\boldsymbol{n}) \log \boldsymbol{n})$
(2) Using Fibonacci Heaps, $\boldsymbol{O}(\log n)$ for extractMin and $\boldsymbol{O}(1)$ (amortized) for decreaseKey. Total: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$.

- Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?
- Prim's algorithm = Dijkstra where length of a path π is the weight of the heaviest edge in π. (Bottleneck shortest path.)

Running time of Prim's Algorithm

$\boldsymbol{O}(\boldsymbol{n})$ extractMin operations and $\boldsymbol{O}(\boldsymbol{m})$ decreaseKey operations
(1) Using standard Heaps, extractMin and decreaseKey take $\boldsymbol{O}(\log \boldsymbol{n})$ time. Total: $\boldsymbol{O}((\boldsymbol{m}+\boldsymbol{n}) \log \boldsymbol{n})$
(2) Using Fibonacci Heaps, $\boldsymbol{O}(\log n)$ for extractMin and $\boldsymbol{O}(1)$ (amortized) for decreaseKey. Total: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$.
(0) Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?
(1) Prim's algorithm $=$ Dijkstra where length of a path π is the weight of the heaviest edge in π. (Bottleneck shortest path.)

THE END

(for now)

Algorithms \& Models of Computation CS/ECE 374, Fall 2020

20.6.4
 Union-find data-structure

Requirements from the union-find data-structure
(a) Maintain a collection of sets.
(2) makeSet (x) - creates a set that contains the single element x.
(3) find (x) - returns the set that contains x.
(9) union (A, B) - returns set $=$ union of A and B. That is $A \cup B$. merges the two sets \boldsymbol{A} and \boldsymbol{B} and return the merged set.

Requirements from the union-find data-structure

(1) Maintain a collection of sets.
(C) makeSet (x) - creates a set that contains the single element x. (3) find (x) - returns the set that contains x.
(9) union $(\boldsymbol{A}, \boldsymbol{B})$ - returns set $=$ union of \boldsymbol{A} and B. That is $A \cup B$. merges the two sets A and B and return the merged set.

Requirements from the union-find data-structure

(1) Maintain a collection of sets.
(2) makeSet (\boldsymbol{x}) - creates a set that contains the single element \boldsymbol{x}.
(- find (x) - returns the set that contains x.
© union $(\boldsymbol{A}, \boldsymbol{B})$ - returns set $=$ union of \boldsymbol{A} and \boldsymbol{B}. That is $\boldsymbol{A} \cup \boldsymbol{B}$. merges the two sets \boldsymbol{A} and \boldsymbol{B} and return the merged set.

Requirements from the union-find data-structure

(1) Maintain a collection of sets.
(2) makeSet (\boldsymbol{x}) - creates a set that contains the single element \boldsymbol{x}.
(3) find (x) - returns the set that contains \boldsymbol{x}.
union (A, B) - returns set $=$ union of A and B. That is $A \cup B$. merges the two sets \boldsymbol{A} and \boldsymbol{B} and return the merged set.

Requirements from the union-find data-structure

(1) Maintain a collection of sets.
(2) makeSet (x) - creates a set that contains the single element \boldsymbol{x}.
(3) find (x) - returns the set that contains \boldsymbol{x}.
(9) union $(\boldsymbol{A}, \boldsymbol{B})$ - returns set $=$ union of \boldsymbol{A} and \boldsymbol{B}. That is $\boldsymbol{A} \cup \boldsymbol{B}$.
merges the two sets A and B and return the merged set.

Requirements from the union-find data-structure

(1) Maintain a collection of sets.
(2) makeSet (\boldsymbol{x}) - creates a set that contains the single element \boldsymbol{x}.
(3) find (x) - returns the set that contains \boldsymbol{x}.
(9) union $(\boldsymbol{A}, \boldsymbol{B})$ - returns set $=$ union of \boldsymbol{A} and \boldsymbol{B}. That is $\boldsymbol{A} \cup \boldsymbol{B}$.
... merges the two sets \boldsymbol{A} and \boldsymbol{B} and return the merged set.

Pseudo-code of Union-Find using reverse tree...

```
makeSet(x)
    \overline{p}}(x)\leftarrow
    rank}(x)\leftarrow
```

```
find(x)
```

find(x)
if }\boldsymbol{x}\not=\overline{\mathbf{p}}(\boldsymbol{x})\mathrm{ then
if }\boldsymbol{x}\not=\overline{\mathbf{p}}(\boldsymbol{x})\mathrm{ then
\overline{p}}(x)\leftarrow\mathrm{ find (产(x))
\overline{p}}(x)\leftarrow\mathrm{ find (产(x))
return \overline{p}(x)

```
    return \overline{p}(x)
```


Union-find

Theorem 20.1.

For a sequence of \boldsymbol{m} operations over \boldsymbol{n} elements, the overall running time of the UnionFind data-structure is $\boldsymbol{O}\left((\boldsymbol{n}+\boldsymbol{m}) \log ^{*} \boldsymbol{n}\right)$.
(Better analysis is known - to involved to explain here.)

THE END

(for now)

Algorithms \& Models of Computation CS/ECE 374, Fall 2020

20.6.5
 Implementing Kruskal's Algorithm

Kruskal's Algorithm

```
Kruskal_ComputeMST
    Initially E is the set of all edges in G
    T}\mathrm{ is empty (* T will store edges of a MST *)
    while E is not empty do
        choose e }\inE=E\mathrm{ of minimum cost
        if (T}\cup{\boldsymbol{e}}\mathrm{ does not have cycles)
            add e to T
return the set T
```

© Presort edges based on cost. Choosing minimum can be done in $O(1)$ time
(2) Do BFS/DFS on $\boldsymbol{T} \cup\{\boldsymbol{e}\}$. Takes $\boldsymbol{O}(\boldsymbol{n})$ time
(3) Total time $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{m})+\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})=\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})$

Kruskal's Algorithm

```
Kruskal_ComputeMST
    Initially E is the set of all edges in G
    T}\mathrm{ is empty (* T will store edges of a MST *)
    while E is not empty do
        choose e}\in\mathbb{E}\mathrm{ of minimum cost
        if (T}\cup{\boldsymbol{e}}\mathrm{ does not have cycles)
            add e to T
return the set T
```

© Presort edges based on cost. Choosing minimum can be done in $O(1)$ time
(2) Do BFS/DFS on $\boldsymbol{T} \cup\{\boldsymbol{e}\}$. Takes $\boldsymbol{O}(\boldsymbol{n})$ time
(3) Total time $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{m})+\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})=\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})$

Kruskal's Algorithm

```
Kruskal_ComputeMST
    Initially E is the set of all edges in G
    T}\mathrm{ is empty (* T will store edges of a MST *)
    while E is not empty do
        choose e\inE of minimum cost
        if (T}\cup{\boldsymbol{e}}\mathrm{ does not have cycles)
            add e to T
return the set T
```

(1) Presort edges based on cost. Choosing minimum can be done in $\boldsymbol{O}(\mathbf{1})$ time
(2) Do BFS/DFS on $T \cup\{e\}$. Takes $O(n)$ time
(3) Total time $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{m})+\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})=\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})$

Kruskal's Algorithm

```
Kruskal_ComputeMST
    Initially E is the set of all edges in G
    T}\mathrm{ is empty (* T will store edges of a MST *)
    while E is not empty do
        choose e}\inE=E\mathrm{ of minimum cost
        if (T}\cup{\boldsymbol{e}}\mathrm{ does not have cycles)
            add e to T
return the set T
```

(1) Presort edges based on cost. Choosing minimum can be done in $\boldsymbol{O}(\mathbf{1})$ time
(2) Do BFS/DFS on $T \cup\{e\}$. Takes $O(n)$ time
(3) Total time $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{m})+\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})=\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})$

Kruskal's Algorithm

```
Kruskal_ComputeMST
    Initially E is the set of all edges in G
    T}\mathrm{ is empty (* T will store edges of a MST *)
    while E is not empty do
        choose e}\inE=E\mathrm{ of minimum cost
        if (T}\cup{\boldsymbol{e}}\mathrm{ does not have cycles)
            add e to T
return the set T
```

(1) Presort edges based on cost. Choosing minimum can be done in $\boldsymbol{O}(\mathbf{1})$ time
(2) Do BFS/DFS on $\boldsymbol{T} \cup\{\boldsymbol{e}\}$. Takes $\boldsymbol{O}(\boldsymbol{n})$ time
(3) Total time $O(m \log m)+O(m n)=O(m n)$

Kruskal's Algorithm

```
Kruskal_ComputeMST
    Initially E is the set of all edges in G
    T}\mathrm{ is empty (* T will store edges of a MST *)
    while E is not empty do
        choose e}\inE=E\mathrm{ of minimum cost
        if (T}\cup{\boldsymbol{e}}\mathrm{ does not have cycles)
            add e to T
return the set T
```

(1) Presort edges based on cost. Choosing minimum can be done in $\boldsymbol{O}(\mathbf{1})$ time
(2) Do BFS/DFS on $\boldsymbol{T} \cup\{\boldsymbol{e}\}$. Takes $\boldsymbol{O}(\boldsymbol{n})$ time
(3) Total time $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{m})+\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})=\boldsymbol{O}(\boldsymbol{m} \boldsymbol{n})$

Implementing Kruskal's Algorithm Efficiently

```
Kruskal_ComputeMST
    Sort edges in E based on cost
    T is empty (* T will store edges of a MST *)
    each vertex и is placed in a set by itself
    while E is not empty do
        pick e}=(\boldsymbol{u},\boldsymbol{v})\in\boldsymbol{E}\mathrm{ of minimum cost
        if }\boldsymbol{u}\mathrm{ and v belong to different sets
            add e to T
            merge the sets containing u}\mathrm{ and v
return the set T
```


Implementing Kruskal's Algorithm Efficiently

```
Kruskal_ComputeMST
    Sort edges in E based on cost
    T is empty (* T will store edges of a MST *)
    each vertex и is placed in a set by itself
    while E is not empty do
        pick e}=(\boldsymbol{u},\boldsymbol{v})\in\boldsymbol{E}\mathrm{ of minimum cost
        if \boldsymbol{u}}\mathrm{ and v belong to different sets
            add e to T
            merge the sets containing u}\mathrm{ and v
    return the set T
```

Need a data structure to check if two elements belong to same set and to merge two sets
Using Union-Find data structure can implement Kruskal's algorithm in $\boldsymbol{O}((\boldsymbol{m}+\boldsymbol{n}) \log \boldsymbol{m})$ time.

Implementing Kruskal's Algorithm Efficiently

```
Kruskal_ComputeMST
    Sort edges in E based on cost
    T}\mathrm{ is empty (* T will store edges of a MST *)
    each vertex u is placed in a set by itself
    while E is not empty do
        pick }\boldsymbol{e}=(\boldsymbol{u},\boldsymbol{v})\in\boldsymbol{E}\mathrm{ of minimum cost
        if \boldsymbol{u}}\mathrm{ and v belong to different sets
            add e to T
            merge the sets containing u}\mathrm{ and v
    return the set T
```

Need a data structure to check if two elements belong to same set and to merge two sets.
Using Union-Find data structure can implement Kruskal's algorithm in $\boldsymbol{O}((\boldsymbol{m}+\boldsymbol{n}) \log \boldsymbol{m})$ time.

THE END

(for now)

Algorithms \& Models of Computation CS/ECE 374, Fall 2020

20.7
 MST: An epilogue

Best Known Asymptotic Running Times for MST
Prim's algorithm using Fibonacci heaps: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$. If \boldsymbol{m} is $\boldsymbol{O}(\boldsymbol{n})$ then running time is $\Omega(\boldsymbol{n} \log \boldsymbol{n})$.

Question
Is there a linear time $(\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$ time $)$ algorithm for MST?
© $\boldsymbol{O}\left(\boldsymbol{m} \log ^{*} \boldsymbol{m}\right)$ time [Fredman and Tarjan 1987]
(2) $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time using bit operations in RAM model [Fredman, Willard 1994]
(3) $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$ expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
(© $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \alpha(\boldsymbol{m}, \boldsymbol{n}))$ time [Chazelle 2000]
© Still open: Is there an $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time deterministic algorithm in the comparison model?

Best Known Asymptotic Running Times for MST
Prim's algorithm using Fibonacci heaps: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$.
If \boldsymbol{m} is $\boldsymbol{O}(\boldsymbol{n})$ then running time is $\Omega(\boldsymbol{n} \log \boldsymbol{n})$.

Question

Is there a linear time $(\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time $)$ algorithm for MST?

```
(1)O(m log* m) time [Fredman and Tarjan 1987]
(0)O(\boldsymbol{m}+\boldsymbol{n})\mathrm{ time using bit operations in RAM model [Fredman, Willard 1994]}
* O(m+n) expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
(0)O((n+m)\alpha(m,n)) time [Chazelle 2000]
0}\mathrm{ Still open: Is there an O(n+m) time deterministic algorithm in the comparison
model?
```


Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$.
If \boldsymbol{m} is $\boldsymbol{O}(\boldsymbol{n})$ then running time is $\Omega(\boldsymbol{n} \log \boldsymbol{n})$.

Question

Is there a linear time $(\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time $)$ algorithm for MST?
(1) $\mathbf{O}\left(\boldsymbol{m} \log ^{*} \boldsymbol{m}\right)$ time [Fredman and Tarjan 1987]
(2) $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time using bit operations in RAM model [Fredman, Willard 1994]
(3) $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
(4) $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \alpha(\boldsymbol{m}, \boldsymbol{n}))$ time [Chazelle 2000]
(5) Still open: Is there an $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time deterministic algorithm in the comparison model?

