Algorithms \& Models of Computation

 CS/ECE 374, Fall 2020

 CS/ECE 374, Fall 2020

 DAGs, DFS, topological sorting,

 DAGs, DFS, topological sorting, linear time algorithm for SCC linear time algorithm for SCC
 Lecture 16
 Thursday, October 22, 2020

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.1
 Overview: Depth First Search and SCC

Overview

Topics:

- Structure of directed graphs
- DAGs: Directed acyclic graphs.
- Topological ordering.
- DFS pre/post number, and its properties.
- Linear time algorithm for SCCs.

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.2
 Directed Acyclic Graphs

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020

 16.2.1

 16.2.1

 DAGs definition and basic properties

 DAGs definition and basic properties}
Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Is this a DAG?

Sources and Sinks

Definition

(1) A vertex \boldsymbol{u} is a source if it has no in-coming edges.
(2) A vertex \boldsymbol{u} is a sink if it has no out-going edges.

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.
\square
Proof
Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that v_{1} is a source and v_{k} is a
sink. Suppose not. Then v_{1} has an incoming edge which either creates a cycle or a
longer path both of which are contradictions. Similarly if v_{k} has an outgoing edge.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that v_{1} is a source and v_{k} is a sink. Suppose not. Then v_{1} has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_{k} has an outgoing edge.

DAG properties

(1) G is a DAG if and only if $G^{r e v}$ is a DAG.
(2) G is a DAG if and only each node is in its own strong connected component. Formal proofs: exercise.

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.2.2

Topological ordering

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that
(1) Transitivity: $\forall x . y, z \in X \quad x \prec y$ and $y \prec z \Longrightarrow x \prec z$.
(2) For any $x, y \in X$, exactly one of the following holds:
$x \prec y, y \prec x$ or $x=y$.

Cannot have $x_{1}, \ldots, x_{m} \in X$, such that $x_{1} \prec X_{2}, \ldots, x_{m-1} \prec x_{m}, x_{m} \prec x_{1}$,
because.

Order on a (finite) set X : listing the elements of X from smallest to largest.

Total recall: Order on a set

Order or strict total order on a set \boldsymbol{X} is a binary relation \prec on \boldsymbol{X}, such that
(1) Transitivity: $\forall x . y, z \in X \quad x \prec y$ and $y \prec z \Longrightarrow x \prec z$.
(2) For any $x, y \in X$, exactly one of the following holds:
$x \prec y, y \prec x$ or $x=y$.

Cannot have $x_{1}, \ldots, x_{m} \in X$, such that $x_{1} \prec X_{2}, \ldots, x_{m-1} \prec x_{m}, x_{m} \prec x_{1}$, because...

Order on a (finite) set \boldsymbol{X} : listing the elements of \boldsymbol{X} from smallest to largest.

Total recall: Order on a set

Order or strict total order on a set \boldsymbol{X} is a binary relation \prec on \boldsymbol{X}, such that
(1) Transitivity: $\forall x . y, z \in X \quad x \prec y$ and $y \prec z \Longrightarrow x \prec z$.
(2) For any $x, y \in X$, exactly one of the following holds:
$x \prec y, y \prec x$ or $x=y$.

Cannot have $x_{1}, \ldots, x_{m} \in X$, such that $x_{1} \prec X_{2}, \ldots, x_{m-1} \prec x_{m}, x_{m} \prec x_{1}$, because...

Order on a (finite) set \boldsymbol{X} : listing the elements of \boldsymbol{X} from smallest to largest.

Convention about writing edges

(1) Undirected graph edges:

$$
\boldsymbol{u} \boldsymbol{v}=\{\boldsymbol{u}, \boldsymbol{v}\}=\boldsymbol{v} \boldsymbol{u} \in \mathrm{E}
$$

(2) Directed graph edges:

$$
u \rightarrow v \quad \equiv \quad(u, v) \quad \equiv \quad(u \rightarrow v)
$$

Topological Ordering/Sorting

Topological Ordering of G

Graph G

Definition

A topological ordering/topological sorting of $G=(V, E)$ is an ordering \prec on V such that if $(\boldsymbol{u} \rightarrow \boldsymbol{v}) \in E$ then $\boldsymbol{u} \prec \boldsymbol{v}$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longleftrightarrow G$ is a DAG.
Need to show both directions.

DAGs and Topological Sort

Lemma
 A directed graph G is a $\mathrm{DAG} \Longrightarrow G$ can be topologically ordered.

Proof.

Consider the following algorithm:
(1) Pick a source \boldsymbol{u}, output it.
(2) Remove \boldsymbol{u} and all edges out of \boldsymbol{u}.
(0) Repeat until graph is empty.

Exercise: prove this gives topological sort.

Topological ordering in linear time

Exercise: show algorithm can be implemented in $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$ time.

Topological Sort: Example

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longrightarrow G$ is a DAG.

Proof.

Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec. G has a cycle

$$
C=u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow u_{1} .
$$

Then $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{2} \prec \ldots \prec \boldsymbol{u}_{\boldsymbol{k}} \prec \boldsymbol{u}_{1}$
A contradiction (to \prec being an order). Not possible to topologically order the vertices.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longrightarrow G$ is a DAG.

Proof.

Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec. G has a cycle

$$
C=\boldsymbol{u}_{1} \rightarrow \mathbf{u}_{2} \rightarrow \cdots \rightarrow \boldsymbol{u}_{\mathbf{k}} \rightarrow \mathbf{u}_{1}
$$

Then $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{2} \prec \ldots \prec \boldsymbol{u}_{\boldsymbol{k}} \prec \boldsymbol{u}_{1}$
$\Longrightarrow \boldsymbol{u}_{1} \prec \boldsymbol{u}_{1}$.
A contradiction (to \prec being an order). Not possible to topologically order the vertices.

Regular sorting and DAGs

DAGs and Topological Sort

(1) Note: A DAG G may have many different topological sorts.
(2) Exercise: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?
(3) Exercise: What is a DAG with the least number of distinct topological sorts for a given number \boldsymbol{n} of vertices?

THE END

(for now)

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 16.2.2.1
 Explicit defintion of what topological ordering

An explicit defintion of what topological ordering of a graph is
For a graph $G=(V, E)$ a topological ordering of a graph is a numbering $\boldsymbol{\pi}: \boldsymbol{V} \rightarrow\{1,2, \ldots, \boldsymbol{n}\}$, such that

$$
\forall(u \rightarrow v) \in \mathrm{E}(\mathrm{G}) \Longrightarrow \pi(u)<\pi(v)
$$

(That is, $\boldsymbol{\pi}$ is one-to-one, and $\boldsymbol{n}=|\boldsymbol{V}|$)

Example...

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.3

Depth First Search (DFS)

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
 16.3.1
 Depth First Search (DFS) in Undirected Graphs

Depth First Search

(1) DFS special case of Basic Search.
(2) DFS is useful in understanding graph structure.

- DFS used to obtain linear time $(\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$) algorithms for
(1) Finding cut-edges and cut-vertices of undirected graphs
(2) Finding strong connected components of directed graphs
(4) ...many other applications as well.

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

```
DFS(G)
    for all u\inV(G) do
        Mark u as unvisited
        Set pred(u) to null
    T}\mathrm{ is set to Ø
    while \exists unvisited u do
        DFS(u)
    Output T
```

```
```

DFS(u)

```
```

DFS(u)
Mark u as visited
Mark u as visited
for each uv in Out(u) do
for each uv in Out(u) do
if v}\mathrm{ is not visited then
if v}\mathrm{ is not visited then
add edge uv to T
add edge uv to T
set pred(v) to u
set pred(v) to u
DFS(v)

```
```

 DFS(v)
    ```
```

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.

Example

Edges classified into two types: $\boldsymbol{u v} \in E$ is a
(1) tree edge: belongs to \boldsymbol{T}
(2) non-tree edge: does not belong to \boldsymbol{T}

Properties of DFS tree

Proposition

(1) T is a forest
(2) connected components of T are same as those of G.
(3) If $\boldsymbol{u} \boldsymbol{v} \in E$ is a non-tree edge then, in T, either:
(1) \boldsymbol{u} is an ancestor of \boldsymbol{v}, or
(2) \boldsymbol{v} is an ancestor of \boldsymbol{u}.

Question: Why are there no cross-edges?

Exercise

Prove that DFS of a graph G with n vertices and m edges takes $O(n+m)$ time.

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.3.2
 DFS with pre-post numbering

DFS

DFS with Visit Times

Keep track of when nodes are visited.

```
DFS(G)
    for all u}\in\boldsymbol{V}(\boldsymbol{G})\mathrm{ do
        Mark u as unvisited
    T}\mathrm{ is set to }
    time =0
    while \exists unvisited u do
        DFS(u)
    Output T
```

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each uv in Out(u) do
        if v}\mathrm{ is not marked then
        add edge uv to T
        DFS(v)
    post(u)= ++time
```

Animation

$$
\begin{aligned}
& \text { time }=0 \\
& \text { vertex }\lfloor\text { [pere, post }]
\end{aligned}
$$

Animation

Animation

Animation

time $=2$ | vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |

Animation

time $=2$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |

Animation

Animation

time $=4$

| vertex | $[$ pre, $\boldsymbol{p o s t}]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |

Animation

| time $=5$ | |
| :---: | :---: |
| vertex | $[$ pre, post $]$ |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |
| 6 | $[5]$, |

Animation

| time $=\mathbf{6}$ | |
| :---: | :---: |
| vertex | $[$ pre, post $]$ |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |
| 6 | $[5,6]$ |

Animation

Animation

Animation
time $=9$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |
| 6 | $[5,6]$ |
| 3 | $[7]$, |
| 7 | $[8]$, |
| 8 | $[9]$, |

Animation
time $=10$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |
| 6 | $[5,6]$ |
| 3 | $[7]$, |
| 7 | $[8]$, |
| 8 | $[9,10]$ |

Animation
time $=11$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |
| 6 | $[5,6]$ |
| 3 | $[7]$, |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |

Animation
time $=12$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |

Animation
time $=13$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4,13]$ |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |

Animation

time $=14$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3,14]$ |
| 5 | $[4,13]$ |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |

Animation
time $=15$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2,15]$ |
| 4 | $[3,14]$ |
| 5 | $[4,13]$ |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |

Animation

| time $=\mathbf{1} \mathbf{6}$ | |
| :---: | :---: |
| vertex | $[$ pre, post $]$ |
| 1 | $[1,16]$ |
| 2 | $[2,15]$ |
| 4 | $[3,14]$ |
| 5 | $[4,13]$ |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |

Animation

| tine $=17$ | |
| :---: | :---: |
| vertex | $[$ pre, post $]$ |
| 1 | $[1,16]$ |
| 2 | $[2,15]$ |
| 4 | $[3,14]$ |
| 5 | $[4,13]$ |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |
| 9 | $[17]$, |

Animation
time $=18$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1,16]$ |
| 2 | $[2,15]$ |
| 4 | $[3,14]$ |
| 5 | $[4,13]$ |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |
| 9 | $[17]$, |
| 10 | $[18]$, |

Animation

time $=19$

| vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1,16]$ |
| 2 | $[2,15]$ |
| 4 | $[3,14]$ |
| 5 | $[4,13]$ |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |
| 9 | $[17]$, |
| 10 | $[18,19]$ |

Animation

| time $=20$ | |
| :---: | :---: |
| vertex | $[$ pre, post $]$ |
| 1 | $[1,16]$ |
| 2 | $[2,15]$ |
| 4 | $[3,14]$ |
| 5 | $[4,13]$ |
| 6 | $[5,6]$ |
| 3 | $[7,12]$ |
| 7 | $[8,11]$ |
| 8 | $[9,10]$ |
| 9 | $[17,20]$ |
| 10 | $[18,19]$ |

Animation

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(\boldsymbol{v})]$ are disjoint or one is contained in the other.

- Assume without loss of generality that pre $(\boldsymbol{u})<\operatorname{pre}(\boldsymbol{v})$. Then \boldsymbol{v} visited after \boldsymbol{u}
- If DFS (v) invoked before $\operatorname{DFS}(\boldsymbol{u})$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$
- If DFS(v) invoked after DFS(u) finished, pre(v) > post(u)
pre and post numbers useful in several applications of DFS

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(\boldsymbol{v})]$ are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre $(u)<$ pre (v). Then v visited after u
- If DFS(v) invoked before DFS(u) finished, $\operatorname{post}(v)<\operatorname{post}(u)$
- If DFS (v) invoked after $\operatorname{DFS}(u)$ finished, $\operatorname{pre}(v)>\operatorname{post}(u)$
pre and post numbers useful in several applications of DFS

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(\boldsymbol{v})]$ are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that $\operatorname{pre}(\boldsymbol{u})<\operatorname{pre}(\boldsymbol{v})$. Then \boldsymbol{v} visited after \boldsymbol{u}.
- If DFS (v) invoked before DFS(u) finished, $\operatorname{post}(v)<\operatorname{post}(u)$. - If DFS (v) invoked after DFS(u) finished, $\operatorname{pre}(v)>\operatorname{post}(u)$
pre and post numbers useful in several applications of DFS

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(\boldsymbol{v})]$ are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that $\operatorname{pre}(\boldsymbol{u})<\operatorname{pre}(\boldsymbol{v})$. Then \boldsymbol{v} visited after \boldsymbol{u}.
- If DFS (v) invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.
- If DFS(v) invoked after DFS(u) finished, pre(v) $>\operatorname{post}(u)$
pre and post numbers useful in several applications of DFS

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(\boldsymbol{v})]$ are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that $\operatorname{pre}(\boldsymbol{u})<\operatorname{pre}(\boldsymbol{v})$. Then \boldsymbol{v} visited after \boldsymbol{u}.
- If DFS (v) invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.
- If DFS(v) invoked after DFS($u)$ finished, $\operatorname{pre}(v)>\operatorname{post}(u)$.
pre and post numbers useful in several applications of DFS

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(\boldsymbol{v})]$ are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that $\operatorname{pre}(\boldsymbol{u})<\operatorname{pre}(\boldsymbol{v})$. Then \boldsymbol{v} visited after \boldsymbol{u}.
- If DFS (v) invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.
- If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).
pre and post numbers useful in several applications of DFS

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.4

DFS in Directed Graphs

DFS

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 16.4.1
 DFS in Directed Graphs: Pre/Post numbering

DFS in Directed Graphs

DFS(G)

Mark all nodes \boldsymbol{u} as unvisited
\boldsymbol{T} is set to \emptyset
time $=0$
while there is an unvisited node \boldsymbol{u} do DFS(u)
Output \boldsymbol{T}

```
DFS(u)
    Mark u as visited
    pre(u)= ++time
    for each edge (u,v) in Out(u) do
        if v}\mathrm{ is not visited
            add edge (u,v) to T
            DFS(v)
    post(u)= ++time
```

Example of DFS in directed graph

Example of DFS in directed graph

DFS Properties

Generalizing ideas from undirected graphs:
(1) DFS (\boldsymbol{G}) takes $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time.
© Edges added form a branching: a forest of out-trees. Output of DFS (G) depends on the order in which vertices are considered
? If u is the first vertex considered by $\operatorname{DFS}(G)$ then $D F S(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(u)$
(4) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G) is useful in directed graphs but it is.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
(3) If u is the first vertex considered by $\operatorname{DFS}(G)$ then $D F S(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(\boldsymbol{u})$
(4) For any two vertices x, y the intervals $[\operatorname{nre}(x), \operatorname{nost}(x)]$ and $[\operatorname{nre}(y), \operatorname{nost}(y)]$ are either disjoint or one is contained in the other.

Note: Not obvious whether $\operatorname{DFS}(G)$ is useful in directed graphs but it is.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
(3) If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(\boldsymbol{u})$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in \boldsymbol{T} if and only if $\boldsymbol{v} \in \operatorname{rch}(\boldsymbol{u})$
(9) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

Not obvious whether DFS($\mathbf{G})$ is useful in directed graphs but it is.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(\boldsymbol{m}+\boldsymbol{n})$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
(3) If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in \boldsymbol{T} if and only if $\boldsymbol{v} \in \operatorname{rch}(\boldsymbol{u})$
(4) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.
Note: Not obvious whether DFS(G) is useful in directed graphs but it is.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
(3) If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in \boldsymbol{T} if and only if $\boldsymbol{v} \in \operatorname{rch}(\boldsymbol{u})$
(4) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.
Note: Not obvious whether $\operatorname{DFS}(G)$ is useful in directed graphs but it is.

DFS tree and related edges

Edges of G can be classified with respect to the DFS tree T as:
(1) Tree edges that belong to T
(2) A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
(0) A backward edge is a non-tree edge (y, x) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.

(0) A cross edge is a non-tree edges (x, y) such that the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are disjoint.

Types of Edges

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.4.2
 DFS and cycle detection:
 Topological sorting using DFS

DFS

Cycles in graphs

Question: Given an undirected graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

Cycles in graphs

Question: Given an undirected graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

Cycle detection in directed graph using topological sorting

Question

Given G, is it a DAG?
If it is, compute a topological sort.
If it failes, then output the cycle C.

Topological sort a graph using DFS...

And detect a cycle in the propcesss

DFS based algorithm:
(1) Compute $\operatorname{DFS}(G)$
(2) If there is a back edge $\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{u})$ then G is not a DAG. Output cycle \boldsymbol{C} formed by path from \boldsymbol{u} to \boldsymbol{v} in T plus edge $(\boldsymbol{v}, \boldsymbol{u})$.
(3) Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $\operatorname{DFS}(G)$ can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in $O(n+m)$ time.
Correctness is not so obvious. See next two propositions

Topological sort a graph using DFS...

And detect a cycle in the propcesss

DFS based algorithm:
(1) Compute DFS(G)
(2) If there is a back edge $\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{u})$ then G is not a DAG. Output cycle \boldsymbol{C} formed by path from \boldsymbol{u} to \boldsymbol{v} in \boldsymbol{T} plus edge $(\boldsymbol{v}, \boldsymbol{u})$.
(3) Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $D F S(G)$ can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time.

```
Correctness is not so obvious. See next two propositions
```


Topological sort a graph using DFS...

And detect a cycle in the propcesss

DFS based algorithm:
(1) Compute DFS(G)
(2) If there is a back edge $\boldsymbol{e}=(\boldsymbol{v}, \boldsymbol{u})$ then G is not a DAG. Output cycle \boldsymbol{C} formed by path from \boldsymbol{u} to \boldsymbol{v} in \boldsymbol{T} plus edge $(\boldsymbol{v}, \boldsymbol{u})$.
(3) Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $D F S(G)$ can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time.
Correctness is not so obvious. See next two propositions.

Back edge and Cycles

Proposition

G has a cycle \Longleftrightarrow there is a back-edge in $\operatorname{DFS}(G)$.

Proof.

If: $(\boldsymbol{u}, \boldsymbol{v})$ is a back edge implies there is a cycle \boldsymbol{C} consisting of the path from \boldsymbol{v} to \boldsymbol{u} in DFS search tree and the edge $(\boldsymbol{u}, \boldsymbol{v})$.

Only if: Suppose there is a cycle $C=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{1}$.
Let v_{i} be first node in C visited in DFS.
All other nodes in C are descendants of v_{i} since they are reachable from v_{i}.
Therefore, $\left(\boldsymbol{v}_{\boldsymbol{i}-1}, \boldsymbol{v}_{\boldsymbol{i}}\right)$ (or $\left(\boldsymbol{v}_{\boldsymbol{k}}, \boldsymbol{v}_{1}\right)$ if $\boldsymbol{i}=1$) is a back edge.

Decreasing post numbering is valid

Proposition

If G is a $D A G$ and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.

Proof.

Assume $\operatorname{post}(\boldsymbol{u})<\boldsymbol{\operatorname { p o s t }}(\boldsymbol{v})$ and $(\boldsymbol{u} \rightarrow \boldsymbol{v})$ is an edge in \boldsymbol{G}. One of two holds:

- Case 1: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is contained in $[\operatorname{pre}(v), \operatorname{post}(v)]$.
- Case 2: $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ is disjoint from $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(\boldsymbol{v})]$

Decreasing post numbering is valid

Proposition

If G is a $D A G$ and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.

Proof.

Assume $\operatorname{post}(\boldsymbol{u})<\boldsymbol{\operatorname { p o s t }}(\boldsymbol{v})$ and $(\boldsymbol{u} \rightarrow \boldsymbol{v})$ is an edge in \boldsymbol{G}. One of two holds:

- Case 1: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is contained in $[\operatorname{pre}(v), \operatorname{post}(v)]$.
- Case 2: $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(u)]$ is disjoint from $[\operatorname{pre}(v), \operatorname{post}(v)]$.

Decreasing post numbering is valid

Proposition

If G is a $D A G$ and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.

Proof.

Assume $\operatorname{post}(\boldsymbol{u})<\boldsymbol{\operatorname { p o s t }}(\boldsymbol{v})$ and $(\boldsymbol{u} \rightarrow \boldsymbol{v})$ is an edge in \boldsymbol{G}. One of two holds:

- Case 1: $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ is contained in $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(\boldsymbol{v})]$. Implies that \boldsymbol{u} is explored during $\operatorname{DFS}(\boldsymbol{v})$ and hence is a descendent of \boldsymbol{v}. Edge $(\boldsymbol{u}, \boldsymbol{v})$ implies a cycle in G but G is assumed to be DAG!
- Case 2: $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ is disjoint from $[\operatorname{pre}(\boldsymbol{v}), \operatorname{post}(v)]$. This cannot happen since \boldsymbol{v} would be explored from \boldsymbol{u}.

Translation

We just proved:

Proposition

If G is a DAG and $\operatorname{post}(\boldsymbol{v})>\operatorname{post}(\boldsymbol{u})$, then $(\boldsymbol{u} \rightarrow \boldsymbol{v})$ is not in G.
\Longrightarrow sort the vertices of a DAG by decreasing post nubmering in decreasing order, then this numbering is valid.

Topological sorting

Theorem

$G=(\boldsymbol{V}, \boldsymbol{E})$: Graph with \boldsymbol{n} vertices and \boldsymbol{m} edges.
Comptue a topological sorting of G using DFS in $\mathbf{O}(n+m)$ time. That is, compute a numbering $\boldsymbol{\pi}: \boldsymbol{V} \rightarrow\{1,2, \ldots, \boldsymbol{n}\}$, such that

$$
(u \rightarrow v) \in E(G) \Longrightarrow \pi(u)<\pi(v) .
$$

Example

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.5

The meta graph of strong connected components

Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.
Previous lecture:
Saw an $\boldsymbol{O}(\boldsymbol{n} \cdot(\boldsymbol{n}+\boldsymbol{m}))$ time algorithm.
This lecture: sketch of a $O(n+m)$ time algorithm.

Graph of SCCs

Graph of SCCs $G^{\text {SCC }}$
Meta-graph of SCCs
Let $S_{1}, S_{2}, \ldots S_{k}$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is $\mathrm{G}^{\mathrm{SCC}}$
(1) Vertices are $S_{1}, S_{2}, \ldots S_{k}$
(2) There is an edge $\left(S_{i}, S_{j}\right)$ if there is some $u \in S_{i}$ and $v \in S_{j}$ such that (u, v) is an edge in G.

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of $G^{\text {rev }}$ is the same as the reversal of G^{SCC}.

Proof.

Exercise.

MUTTS by Patrick McDonnell | 08/04/11

The meta graph of SCCs is a DAG...

Proposition

For any graph G, the graph $G^{S C C}$ has no directed cycle.

Proof.

If $G^{\text {SCC }}$ has a cycle $S_{1}, S_{2}, \ldots, S_{k}$ then $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ should be in the same SCC in G. Formal details: exercise.

To Remember: Structure of Graphs

Undirected graph: connected components of $G=(\boldsymbol{V}, \boldsymbol{E})$ partition V and can be computed in $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time.

Directed graph: the meta-graph $G^{S C C}$ of \boldsymbol{G} can be computed in $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time. $\mathrm{G}^{\text {SCC }}$ gives information on the partition of \boldsymbol{V} into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.6
 Linear time algorithm for finding all strong connected components of a directed graph

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 16.6.1
 Wishful thinking linear-time SCC algorithm

SCC

Finding all SCCs of a Directed Graph

Problem
Given a directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$, output all its strong connected components.

Running time: $O(n(n+m))$
Is there an $O(n+m)$ time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$, output all its strong connected components.
Straightforward algorithm:
Mark all vertices in \boldsymbol{V} as not visited.
for each $\operatorname{vertex} \boldsymbol{u} \in \boldsymbol{V}$ not visited yet do
find $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$ the strong component of $\boldsymbol{u}:$
$\operatorname{Compute} \operatorname{rch}(\boldsymbol{G}, \boldsymbol{u})$ using $\boldsymbol{D F S}(\boldsymbol{G}, \boldsymbol{u})$
$\operatorname{Compute} \operatorname{rch}\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right)$ using DFS $\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right)$
$\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}) \Leftarrow \operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right)$
$\forall \boldsymbol{u} \in \operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}):$ Mark \boldsymbol{u} as visited.

Running time: $\boldsymbol{O}(\boldsymbol{n}(\boldsymbol{n}+\boldsymbol{m}))$
Is there an $O(n+m)$ time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$, output all its strong connected components.
Straightforward algorithm:

| | Mark all vertices in \boldsymbol{V} as not visited. for each vertex $\boldsymbol{u} \in \boldsymbol{V}$ not visited yet do find $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$ the strong component of \boldsymbol{u} : Compute $\operatorname{rch}(\boldsymbol{G}, \boldsymbol{u})$ using $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{u})$ Compute $\operatorname{rch}\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right)$ using $\operatorname{DFS}\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right)$ $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}) \Leftarrow \operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{\mathrm{rev}}, \boldsymbol{u}\right)$ $\forall \boldsymbol{u} \in \operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}):$ Mark \boldsymbol{u} as visited. |
| :---: | :---: |
| Running time:
 Is there an $O(n$ | $+\boldsymbol{m}))$
 time algorithm? |

Structure of a Directed Graph

Graph G

Graph of SCCs $G^{\text {SCC }}$

Reminder

$\mathrm{G}^{\mathrm{SCC}}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph $G^{5 C C}$ is a DAG.

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

(1) Let \boldsymbol{u} be a vertex in a sink SCC of $G^{S C C}$
(2) Do DFS (\boldsymbol{u}) to compute $\operatorname{SCC}(\boldsymbol{u})$
(3) Remove $\operatorname{SCC}(\boldsymbol{u})$ and repeat

ustification

(a) DFS(u) only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

(1) Let \boldsymbol{u} be a vertex in a sink SCC of $G^{S C C}$
(2) Do DFS (\boldsymbol{u}) to compute $\operatorname{SCC}(\boldsymbol{u})$
(3) Remove $\mathbf{S C C}(\boldsymbol{u})$ and repeat

Justification

(1) DFS($\boldsymbol{u})$ only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

(1) Let u be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(\boldsymbol{u})$ to compute $\operatorname{SCC}(\boldsymbol{u})$

- Remove $\operatorname{SCC}(\boldsymbol{u})$ and repeat

Justification

(1) DFS($\boldsymbol{u})$ only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$
© ... since there are no edges coming out a sink!
©
-

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

(1) Let \boldsymbol{u} be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(\boldsymbol{u})$ and repeat

Justification

(1) DFS($\boldsymbol{u})$ only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$
(2) ... since there are no edges coming out a sink!
(3) DFS (\boldsymbol{u}) takes time proportional to size of $\operatorname{SCC}(\boldsymbol{u})$
(1)

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

(1) Let \boldsymbol{u} be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(\boldsymbol{u})$ and repeat

Justification

(1) $\operatorname{DFS}(\boldsymbol{u})$ only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$
(2) ... since there are no edges coming out a sink!
(3) DFS (\boldsymbol{u}) takes time proportional to size of $\operatorname{SCC}(\boldsymbol{u})$
(9) Therefore, total time $O(n+m)$!

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?

Can we obtain an implicit topological sort of $\mathrm{G}^{\mathrm{SCC}}$ without computing $\mathrm{G}^{\mathrm{SCCC}}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?

Can we obtain an implicit topological sort of $G^{\text {SCC }}$ without computing $G^{S C C}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?

Can we obtain an implicit topological sort of $G^{\text {SCC }}$ without computing $G^{S C C}$?

Answer: $\operatorname{DFS}(G)$ gives some information!

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.6.2

Maximum post numbering and the source of the meta-graph

Post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in $\operatorname{DFS}(G)$. Then v is in a SCC S, such that S is a source of $G^{S C C}$.

Reverse post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in DFS $\left(G^{\text {rev }}\right)$. Then v is in a SCC S, such that S is a sink of $G^{\text {SCC }}$.

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph)

Reverse post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in $\operatorname{DFS}\left(G^{\mathrm{rev}}\right)$. Then v is in a SCC S, such that S is a sink of G^{SCC}.

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.6.3

The linear-time SCC algorithm itself

Linear Time Algorithm

for computing the strong connected components in G

```
do DFS(G}\mp@subsup{\boldsymbol{G}}{}{\textrm{rev}})\mathrm{ and output vertices in decreasing post order.
Mark all nodes as unvisited
for each }\boldsymbol{u}\mathrm{ in the computed order do
    if u}\mathrm{ is not visited then
        DFS(u)
        Let }\mp@subsup{S}{\boldsymbol{u}}{}\mathrm{ be the nodes reached by }\boldsymbol{u
        Output Su}\mp@subsup{S}{u}{}\mathrm{ as a strong connected component
        Remove S}\mp@subsup{S}{u}{}\mathrm{ from G
```

 Theorem
 Algorithm runs in time \(\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})\) and correctly outputs all the SCCs of \(\mathbf{G}\).
 Linear Time Algorithm: An Example - Initial steps 1

Graph G:

Reverse graph $G^{\text {rev }}$:

DFS of reverse graph:

Linear Time Algorithm: An Example - Initial steps 2

Reverse graph $G^{\text {rev }}$:

DFS of reverse graph:

Pre/Post DFS numbering of reverse graph:

Linear Time Algorithm: An Example

Removing connected components: 1

Original graph G with rev post numbers:

Do DFS from vertex G remove it.

SCC computed: \{G\}

Linear Time Algorithm: An Example

Removing connected components: 2

Do DFS from vertex G
remove it.

SCC computed: \{G\}

Do DFS from vertex \boldsymbol{H}, remove it.

SCC computed:
$\{G\},\{H\}$

Linear Time Algorithm: An Example

Removing connected components: 3

Do DFS from vertex \boldsymbol{H}, remove it.

SCC computed:
$\{G\},\{H\}$

Do DFS from vertex B
Remove visited vertices:
$\{F, B, E\}$.

SCC computed:
$\{G\},\{H\},\{F, B, E\}$

Linear Time Algorithm: An Example

Removing connected components: 4

Do DFS from vertex F
Remove visited vertices: $\{F, B, E\}$.

SCC computed:
$\{G\},\{H\},\{F, B, E\}$

Do DFS from vertex \boldsymbol{A}
Remove visited vertices:
$\{A, C, D\}$.

$\{G\},\{H\},\{F, B, E\},\{A, C, D\}$

Linear Time Algorithm: An Example

Final result

SCC computed:
$\{G\},\{H\},\{F, B, E\},\{A, C, D\}$
Which is the correct answer!

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph $G=(V, E)$ show that the meta-graph $\mathrm{G}^{\mathrm{SCC}}$ can be obtained in $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$ time.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph $G^{S C C}$?

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.7

An Application of directed graphs to make

Make/Makefile

(@) I know what make/makefile is.
(B) I do NOT know what make/makefile is.

make Utility [Feldman]

(1) Unix utility for automatically building large software applications
(2) A makefile specifies
(1) Object files to be created,
(2) Source/object files to be used in creation, and
(3) How to create them

An Example makefile

```
project: main.o utils.o command.o
    cc -o project main.o utils.o command.o
main.o: main.c defs.h
    cc -c main.c
utils.o: utils.c defs.h command.h
    cc -c utils.c
command.o: command.c defs.h command.h
    cc -c command.c
```


makefile as a Digraph

Computational Problems for make

(1) Is the makefile reasonable?
(2) If it is reasonable, in what order should the object files be created?
(3) If it is not reasonable, provide helpful debugging information.
(4) If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

(1) Is the makefile reasonable? Is G a DAG?
(2) If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
(3) If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
(1) If some file is modified, find the fewest compilations needed to make application consistent.
(1) Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

THE END

(for now)

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.8

Summary

Take away Points

(1) DAGs
(2) Topological orderings.
(3) DFS: pre/post numbering.
(9) Given a directed graph G, its SCCs and the associated acyclic meta-graph $G^{\text {SCC }}$ give a structural decomposition of G that should be kept in mind.
(5) There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
(6) DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

