Algorithms \& Models of Computation

Proving Non-regularity

Lecture 6
Thursday, September 10, 2020

6.1

Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language?

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A direct proof

$$
L=\left\{0^{i} 1^{i} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(\boldsymbol{Q},\{0,1\}, \delta, s, A)$ where $|Q|=\boldsymbol{n}$.

$$
\text { Consider strings } \epsilon, 0,00,000, \cdots, 0^{n} \text { total of } \boldsymbol{n}+1 \text { strings. }
$$

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$. By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$. That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$. M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no DFA for L

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $\boldsymbol{n}+1$ strings.
What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$
By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$. That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no DFA for L

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{\boldsymbol{n}}$ total of $\boldsymbol{n}+1$ strings.
What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $0 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$. That is, M is in the same state after reading 0^{i} and 0^{j} where $\boldsymbol{i} \neq \boldsymbol{j}$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{\boldsymbol{n}}$ total of $\boldsymbol{n}+1$ strings.
What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $0 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$.
That is, \boldsymbol{M} is in the same state after reading 0^{i} and 0^{j} where $\boldsymbol{i} \neq \boldsymbol{j}$.
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $\boldsymbol{i} \neq \boldsymbol{j}$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{\boldsymbol{n}}$ total of $\boldsymbol{n}+1$ strings.
What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $0 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$. That is, M is in the same state after reading 0^{i} and 0^{j} where $\boldsymbol{i} \neq \boldsymbol{j}$.
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $\boldsymbol{i} \neq \boldsymbol{j}$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.

THE END

(for now)

6.2 When two states are equivalent?

Equivalence between states

Definition

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A})$: DFA.
Two states $\boldsymbol{p}, \boldsymbol{q} \in \boldsymbol{Q}$ are equivalent if for all strings $\boldsymbol{w} \in \Sigma^{*}$, we have that

$$
\delta^{*}(p, w) \in A \Longleftrightarrow \delta^{*}(q, w) \in A .
$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A})$: DFA.
Two states $\boldsymbol{p}, \boldsymbol{q} \in Q$ are distinguishable if there exists a string $w \in \Sigma^{*}$, such that

$$
\delta^{*}(\boldsymbol{p}, \boldsymbol{w}) \in \boldsymbol{A} \quad \text { and } \quad \delta^{*}(\boldsymbol{q}, w) \notin A .
$$

or

$$
\delta^{*}(\boldsymbol{p}, \boldsymbol{w}) \notin \boldsymbol{A} \quad \text { and } \quad \delta^{*}(\boldsymbol{q}, \boldsymbol{w}) \in \boldsymbol{A} .
$$

Distinguishable prefixes

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A}):$ DFA

Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Definition

Two strings $u, w \in \Sigma^{*}$ are distinguishable for M (or $L(M)$) if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x such that $u x \in L$ and $w x \notin L$ (or $u x \notin L$ and $w x \in L$).

Distinguishable prefixes

$M=(\boldsymbol{Q}, \Sigma, \delta, s, A): D F A$
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Definition

Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M(\operatorname{or} L(M))$ if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x such that $u x \in L$ and $w x \notin \bar{L}$ (or $u x \notin L$ and $w x \in L$).

Distinguishable prefixes

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A}):$ DFA
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Definition

Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M(\operatorname{or} L(M))$ if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x, such that $u x \in L$ and $w x \notin L$

Distinguishable prefixes

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A}):$ DFA
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Definition

Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M(\operatorname{or} L(M))$ if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x, such that $u x \in L$ and $w x \notin L$ (or $u x \notin L$ and $w x \in L$).

Distinguishable means different states

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x=\delta^{*}(s, x) \in Q$ and $\nabla y=\delta^{*}(s, y) \in Q$

Proof by a figure

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla \boldsymbol{x}=\nabla \boldsymbol{y}$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$. By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow \boldsymbol{A} \ni \nabla \boldsymbol{x w}=\boldsymbol{\delta}^{*}(\boldsymbol{s}, \mathbf{x w})=\boldsymbol{\delta}^{*}(\nabla \boldsymbol{x}, \boldsymbol{w})=\delta^{*}(\nabla y, w)$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!
Assumption that $\nabla x=\nabla y$ is false.

Review questions...

(c) Prove for any $\boldsymbol{i} \neq \boldsymbol{j}$ then 0^{i} and $0^{\boldsymbol{j}}$ are distinguishable for the language $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
(2) Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states. (3) Prove that $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is not regular

Review questions...

(1) Prove for any $\boldsymbol{i} \neq \boldsymbol{j}$ then 0^{i} and $0^{\boldsymbol{j}}$ are distinguishable for the language $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
(2) Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.

- Prove that $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is not regular

Review questions...

(1) Prove for any $\boldsymbol{i} \neq \boldsymbol{j}$ then 0^{i} and 0^{j} are distinguishable for the language $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
(2) Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.
(0) Prove that $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is not regular.

THE END

(for now)

6.2.1
 Old version: Proving non-regularity

Show non-regularity

Proof structure for showing a language L is not regular:
(1) For sake of contradiction, assume it is regular.
(2) There exists a finite DFA $M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A})$ that accepts the language.
(3) Showing that there are prefix strings w_{1}, w_{2}, \ldots that are all distinguishable.
(0) Define $q_{i}=\nabla w_{i}=\delta^{*}\left(s, w_{i}\right)$, for $i=1, \ldots, \infty$.
($\boldsymbol{\forall}, \boldsymbol{j}: \boldsymbol{i} \neq \boldsymbol{j}$: Since $\boldsymbol{w}_{\boldsymbol{i}}$ and $\boldsymbol{w}_{\boldsymbol{j}}$ are distinguishable $\Longrightarrow \boldsymbol{q}_{\boldsymbol{i}} \neq \boldsymbol{q}_{\boldsymbol{j}}$.

- M has infinite number of states. Impossible!
(0) Contradiction to L being regular.

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^{*}$
$M=(Q, \Sigma, \delta, s, A): D F A$ for language $L \subseteq \Sigma^{*}$
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$
$\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)=\delta^{*}(s, y w) \notin A$
$\Longrightarrow A \ni \delta^{*}(s, x w) \notin A$. Impossible!

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

```
Consider three strings }x,y,w\in\mp@subsup{\Sigma}{}{*
M=(Q,\Sigma,\delta,s,A): DFA for language L\subseteq\Sigma*
If \delta}\mp@subsup{\delta}{}{*}(s,xw)\inA\mathrm{ and }\mp@subsup{\delta}{}{*}(s,yw)&&A\mathrm{ then }\mp@subsup{\delta}{}{*}(s,x)\not=\mp@subsup{\delta}{}{*}(s,y
```

Proof.
Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.
$\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)=\delta^{*}(s, y w) \notin A$ $\Longrightarrow A \ni \delta^{*}(s, x w) \notin A$. Impossible!

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^{*}$.
$M=(Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.
$\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)=\delta^{*}(s, y w) \notin A$ $\Longrightarrow A \ni \delta^{*}(s, x w) \notin A$. Impossible!

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^{*}$.
$M=(Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^{*}$.
$M=(Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.

$$
\begin{equation*}
\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right) \tag{*}
\end{equation*}
$$

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^{*}$.
$M=(Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.
$\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)=\delta^{*}(s, y w) \notin A$

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^{*}$.
$M=(Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.
$\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)=\delta^{*}(s, y w) \notin A$

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^{*}$.
$M=(Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.
$\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)=\delta^{*}(s, y w) \notin A$
$\Longrightarrow A \ni \delta^{*}(s, x w) \notin A$. Impossible!

Generalizing the argument

Definition

For a language L over Σ and two strings $x, y \in \Sigma^{*}, x$ and y are distinguishable with respect to L if there is a string $w \in \Sigma^{*}$ such that exactly one of $x w, y w$ is in L. x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j, 0^{i}$ and 0^{j} are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Example: 000 and 0000 are indistinguishable with respect to the language $L=\{w \mid w$ has 00 as a substring $\}$

Generalizing the argument

Definition

For a language L over Σ and two strings $x, y \in \Sigma^{*}, x$ and y are distinguishable with respect to L if there is a string $w \in \Sigma^{*}$ such that exactly one of $x w, y w$ is in L. x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j, 0^{i}$ and 0^{j} are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Example: 000 and 0000 are indistinguishable with respect to the language $L=\{w \mid w$ has 00 as a substring $\}$

Generalizing the argument

Definition

For a language L over Σ and two strings $x, y \in \Sigma^{*}, x$ and y are distinguishable with respect to L if there is a string $w \in \Sigma^{*}$ such that exactly one of $x w, y w$ is in L. x, y are indistinguishable with respect to L if there is no such w.

Example: If $\boldsymbol{i} \neq \boldsymbol{j}, 0^{i}$ and 0^{j} are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Example: 000 and 0000 are indistinguishable with respect to the language
$L=\{w \mid w$ has 00 as a substring $\}$

Generalizing the argument

Definition

For a language L over Σ and two strings $x, y \in \Sigma^{*}, x$ and y are distinguishable with respect to L if there is a string $w \in \Sigma^{*}$ such that exactly one of $x w, y w$ is in L. x, y are indistinguishable with respect to L if there is no such w.

Example: If $\boldsymbol{i} \neq \boldsymbol{j}, 0^{i}$ and 0^{j} are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Example: 000 and 0000 are indistinguishable with respect to the language $L=\{w \mid w$ has 00 as a substring $\}$.

Wee Lemma

Lemma

Suppose $L=L(M)$ for some DFA $M=(Q, \Sigma, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof

Since $\boldsymbol{x}, \boldsymbol{y}$ are distinguishable let w be the distinguishing suffix. If $\delta^{*}(s, x)=\delta^{*}(s, y)$ then M will either accept both the strings xw, yw, or reject both. But exactly one of them is in L, a contradiction.

Wee Lemma

Lemma

Suppose $L=L(M)$ for some DFA $M=(Q, \Sigma, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If $\delta^{*}(s, x)=\delta^{*}(s, y)$ then M will either accept both the strings $x w, y w$, or reject both. But exactly one of them is in L, a contradiction.

THE END

(for now)

6.3
 Fooling sets: Proving non-regularity

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.
Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Theorem
 Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

```
Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F| states.
```


Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Recall

Already proved the following lemma:

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A}):$ DFA for \boldsymbol{L}. If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x=\delta^{*}(s, x)$.

Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.

Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.
By lemma $\boldsymbol{q}_{\boldsymbol{i}} \neq \boldsymbol{q}_{\boldsymbol{j}}$ for all $\boldsymbol{i} \neq \boldsymbol{j}$.
As such, $|Q| \geq\left|\left\{q_{1}, \ldots, q_{m}\right\}\right|=\left|\left\{w_{1}, \ldots, w_{m}\right\}\right|=|F|$.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.
Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}\right.$
By theorem,
As such, numb
Contradiction:

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.
Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set \boldsymbol{F} then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.
Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.
Contradiction: $\mathrm{DFA}=$ deterministic finite automata. But M not finite.

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s\}
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s$\}$

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s$\}$
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$

Harder example: The language of squares is not regular

$$
\left\{0^{k^{2}} \mid k \geq 0\right\}
$$

Really hard: Primes are not regular

$\left\{0^{\boldsymbol{k}} \mid \boldsymbol{k}\right.$ is a prime number $\}$
Hints:
(1) Probably easier to prove directly on the automata.
(2) There are infinite number of prime numbers.
(3) For every $\boldsymbol{n}>0$, observe that $\boldsymbol{n}!, \boldsymbol{n}!+1, \ldots, \boldsymbol{n}$! $+\boldsymbol{n}$ are all composite - there are arbitrarily big gaps between prime numbers.

THE END

(for now)

6.3.1
 Exponential gap in number of states between DFA and NFA sizes

Exponential gap between NFA and DFA size

$L_{4}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a 1 located 4 positions from the end $\}$

DFA:

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA N with $k+1$ states.
Theorem
Every DFA that accepts L_{k} has at least 2^{k} states
Claim
$\boldsymbol{F}=\left\{\boldsymbol{w} \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}
Why?

- Suppose $a_{1} a_{2} \ldots a_{k}$ and $b_{1} b_{2} \ldots b_{k}$ are two distinct bitstrings of length k
- Let i be first index where $a_{i} \neq b_{i}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$ Recall that $\boldsymbol{L}_{\boldsymbol{k}}$ is accepted by a NFA \boldsymbol{N} with $\boldsymbol{k}+1$ states.

Theorem

Every DFA that accepts L_{k} has at least 2^{k} states

\square

- Suppose $a_{1} a_{2} \ldots a_{k}$ and $b_{1} b_{2} \ldots b_{k}$ are two distinct bitstrings of length k
- Let i be first index where $a_{i} \neq b_{i}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$ Recall that L_{k} is accepted by a NFA \boldsymbol{N} with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least 2^{k} states.

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA \boldsymbol{N} with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least 2^{k} states.

Claim

$F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}.
Why?

```
- Suppose }\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\ldots\mp@subsup{a}{k}{}\mathrm{ and }\mp@subsup{b}{1}{}\mp@subsup{b}{2}{}\ldots\mp@subsup{b}{k}{}\mathrm{ are two distinct bitstrings of length }
- Let i}\mathrm{ be first index where }\mp@subsup{a}{i}{}\not=\mp@subsup{b}{i}{
- v}=\mp@subsup{0}{}{k-i-1}\mathrm{ is a distinguishing suffix for the two strings
```


Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA \boldsymbol{N} with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least 2^{k} states.

Claim

$F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}.
Why?

- Suppose $a_{1} a_{2} \ldots a_{k}$ and $b_{1} b_{2} \ldots b_{k}$ are two distinct bitstrings of length k
- Let \boldsymbol{i} be first index where $\boldsymbol{a}_{\boldsymbol{i}} \neq \boldsymbol{b}_{\boldsymbol{i}}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

How do pick a fooling set

How do we pick a fooling set F ?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language \boldsymbol{L}. For example if $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ do not pick 1 and 10 (say). Why?

THE END

(for now)

6.4
 Closure properties: Proving non-regularity

Non-regularity via closure properties

$$
\begin{aligned}
& H=\{\text { bitstrings with equal number of } 0 \text { s and } 1 \mathrm{~s}\} \\
& \boldsymbol{H}^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
\end{aligned}
$$

Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?
 Suppose \boldsymbol{H} is regular. Then since $L\left(0^{*} 1^{*}\right)$ is regular, and regular languages are closed under intersection, \boldsymbol{H}^{\prime} also would be regular. But we know \boldsymbol{H}^{\prime} is not regular, a contradiction

Non-regularity via closure properties

$\boldsymbol{H}=\{$ bitstrings with equal number of 0 s and 1 s$\}$
$H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?
$\boldsymbol{H}^{\prime}=\boldsymbol{H} \cap L\left(0^{*} 1^{*}\right)$
Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Suppose \boldsymbol{H} is regular. Then since $L\left(0^{*} 1^{*}\right)$ is regular, and regular languages are closed under intersection, \boldsymbol{H}^{\prime} also would be regular. But we know \boldsymbol{H}^{\prime} is not regular, a contradiction.

Non-regularity via closure properties

$\boldsymbol{H}=\{$ bitstrings with equal number of 0 s and 1 s$\}$
$H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?
$\boldsymbol{H}^{\prime}=\boldsymbol{H} \cap L\left(0^{*} 1^{*}\right)$
Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?
Suppose \boldsymbol{H} is regular. Then since $L\left(0^{*} 1^{*}\right)$ is regular, and regular languages are closed under intersection, \boldsymbol{H}^{\prime} also would be regular. But we know \boldsymbol{H}^{\prime} is not regular, a contradiction.

Non-regularity via closure properties

General recipe:

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

THE END

(for now)

Algorithms \& Models of Computation

6.5
 Myhill-Nerode Theorem

One automata to rule them all

"Myhill-Nerode Theorem": A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for \boldsymbol{L}.

6.5.1
 Myhill-Nerode Theorem: Equivalence between strings

Indistinguishability

Recall:

Definition

For a language L over Σ and two strings $x, y \in \Sigma^{*}$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^{*}$ such that exactly one of $x w, y w$ is in $L . x, y$ are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation $\equiv\left\llcorner\right.$ over strings in Σ^{*} as follows: $x \equiv\llcorner y$ iff x and y are indistinguishable with respect to L.

Definition

Indistinguishability

Recall:

Definition

For a language L over Σ and two strings $x, y \in \Sigma^{*}$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^{*}$ such that exactly one of $x w, y w$ is in $L . x, y$ are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_{L} over strings in Σ^{*} as follows: $x \equiv_{L} y$ iff x and y are indistinguishable with respect to L.

Definition

```
x \equivL y means that }\forallw\in\mp@subsup{\Sigma}{}{*}:xw\inL\Longleftrightarrowyw\inL In words: \(\boldsymbol{x}\) is equivalent to \(\boldsymbol{y}\) under \(\mathbf{L}\).
```


Example: Equivalence classes

Indistinguishability

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.

Proof.

(1) Reflexive: $\forall x \in \Sigma^{*}: \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow x w \in L$.

(3) Transitivity:

Indistinguishability

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.

Proof.

(1) Reflexive: $\forall x \in \Sigma^{*}: \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow x w \in L . \Longrightarrow x \equiv_{L} x$.
(2) Symmetry: $x \equiv L y$ then $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$

(3) Transitivity:
$\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ and $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow z w \in L$ $\Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow z w \in L$

Indistinguishability

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.

Proof.

(1) Reflexive: $\forall x \in \Sigma^{*}: \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow x w \in L . \Longrightarrow x \equiv \iota x$.
(2) Symmetry: $x \equiv L y$ then $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow x w \in L$

Indistinguishability

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.

Proof.

(1) Reflexive: $\forall x \in \Sigma^{*}: \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow x w \in L . \Longrightarrow x \equiv L x$.
(2) Symmetry: $x \equiv L y$ then $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow x w \in L \Longrightarrow y \equiv_{L} x$.
Transitivity:

Indistinguishability

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.

Proof.

(1) Reflexive: $\forall x \in \Sigma^{*}: \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow x w \in L . \Longrightarrow x \equiv L x$.
(2) Symmetry: $x \equiv L y$ then $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow x w \in L \Longrightarrow y \equiv_{L} x$.
(3) Transitivity: $x \equiv\llcorner y$ and $y \equiv \angle z$
$\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ and $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow z w \in L$

Indistinguishability

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.

Proof.

(1) Reflexive: $\forall x \in \Sigma^{*}: \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow x w \in L . \Longrightarrow x \equiv_{L} x$.
(2) Symmetry: $x \equiv L y$ then $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow x w \in L \Longrightarrow y \equiv_{L} x$.
(3) Transitivity: $x \equiv\llcorner y$ and $y \equiv L z$
$\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ and $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow z w \in L$ $\Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow z w \in L$

Indistinguishability

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.

Proof.

(1) Reflexive: $\forall x \in \Sigma^{*}: \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow x w \in L . \Longrightarrow x \equiv_{L} x$.
(2) Symmetry: $x \equiv L y$ then $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow x w \in L \Longrightarrow y \equiv_{L} x$.
(3) Transitivity: $x \equiv_{L} y$ and $y \equiv_{L} z$
$\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ and $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow z w \in L$
$\Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow z w \in L$
$\Rightarrow \quad X \equiv L Z$.

Equivalences over automatas...

Claim (Just proved.)

$\equiv_{\llcorner }$is an equivalence relation over \sum^{*}.
Therefore, $\equiv_{\llcorner }$partitions Σ^{*} into a collection of equivalence classes.

Definition

L: A language For a string $x \in \Sigma^{*}$, let

$$
[x]=[x]_{L}=\left\{y \in \Sigma^{*} \mid x \equiv\llcorner y\}\right.
$$

be the equivalence class of x according to L.

Definition

$[L]=\left\{[x]_{L} \mid x \in \Sigma^{*}\right\}$ is the set of equivalence classes of L.

Strings in the same equivalence class are indistinguishable

Lemma

Let x, y be two distinct strings. $x \equiv \iota y \Longleftrightarrow x, y$ are indistinguishable for L.

Proof.

$x \equiv\left\llcorner y \Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L\right.$ x and y are indistinguishable for L.

$\Longrightarrow x$ and y are distinguishable for L.

Strings in the same equivalence class are indistinguishable

Lemma

Let x, y be two distinct strings. $x \equiv \iota y \Longleftrightarrow x, y$ are indistinguishable for L.

Proof.

```
x \equivLy }=>|\forallw\in\mp@subsup{\Sigma}{}{*}:xw\inL\Longleftrightarrowyw\in
x}\mathrm{ and }\boldsymbol{y}\mathrm{ are indistinguishable for L.
```

$x \neq L y \Longrightarrow \exists w \in \sum^{*}: x w \in L$ and $y w \notin L$
$\Longrightarrow x$ and y are distinguishable for L.

Strings in the same equivalence class are indistinguishable

Lemma

Let x, y be two distinct strings. $x \equiv \iota y \Longleftrightarrow x, y$ are indistinguishable for L.

Proof.

```
x \equivLy }=>|\forallw\in\mp@subsup{\Sigma}{}{*}:xw\inL\Longleftrightarrowyw\in
x}\mathrm{ and }\boldsymbol{y}\mathrm{ are indistinguishable for L.
\boldsymbol { x } \not \equiv \boldsymbol { L } \boldsymbol { y } \Longrightarrow \exists \mathrm { y } \in \Sigma ^ { * } : x w \in L \text { and } y w \notin L
    x}\mathrm{ and }y\mathrm{ are distinguishable for }
```


Strings in the same equivalence class are indistinguishable

Lemma

Let x, y be two distinct strings. $x \equiv_{L} y \Longleftrightarrow x, y$ are indistinguishable for L.

Proof.

$$
\begin{aligned}
& x \equiv L y \Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L \\
& x \text { and } y \text { are indistinguishable for } L . \\
& \hline x \neq L y \Longrightarrow \exists w \in \Sigma^{*}: x w \in L \text { and } y w \notin L
\end{aligned}
$$

Strings in the same equivalence class are indistinguishable

Lemma

Let x, y be two distinct strings. $x \equiv_{L} y \Longleftrightarrow x, y$ are indistinguishable for L.

Proof.

```
x \Ly # \forallw \in \Sigma*:xw \inL \Longleftrightarrowyw}\in
x}\mathrm{ and }\boldsymbol{y}\mathrm{ are indistinguishable for L.
x\not=L y \Longrightarrow\existsw\in\mp@subsup{\Sigma}{}{*}:xw\inL and yw &L
x}\mathrm{ and }y\mathrm{ are distinguishable for }L\mathrm{ .
```


All strings arriving at a state are in the same class

```
Lemma
M=(Q,\Sigma,\delta,s,A) a DFA for a language L.
For any q}\inA\mathrm{ , let }\mp@subsup{L}{q}{}={w\in\mp@subsup{\Sigma}{}{*}|\nablaw=\mp@subsup{\delta}{}{*}(s,w)=q}
Then, there exists a string x}x\mathrm{ , such that }\mp@subsup{L}{q}{}\subseteq[x\mp@subsup{]}{L}{}\mathrm{ .
```


An inefficient automata

THE END

(for now)

Algorithms \& Models of Computation

6.5.2
 Stating and proving the Myhill-Nerode Theorem

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
$\boldsymbol{x} \equiv \boldsymbol{\Sigma} \boldsymbol{y} \Longleftrightarrow \boldsymbol{x}, \boldsymbol{y}$ are indistinguishable for \boldsymbol{L}.

Corollary

If $\equiv_{\boldsymbol{L}}$ is finite with \boldsymbol{n} equivalence classes then there is a fooling set \boldsymbol{F} of size \boldsymbol{n} for \boldsymbol{L}

Corollary

If $\equiv \boldsymbol{L}$ has infinite number of equivalence classes $\Longrightarrow \exists$ infinite fooling set for L L is not regular

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
$\boldsymbol{x} \equiv_{\llcorner } \boldsymbol{y} \Longleftrightarrow \boldsymbol{x}, \boldsymbol{y}$ are indistinguishable for \mathbf{L}.

Corollary

If $\equiv_{\boldsymbol{L}}$ is finite with \boldsymbol{n} equivalence classes then there is a fooling set \boldsymbol{F} of size \boldsymbol{n} for \boldsymbol{L}.

```
Corollary
If \equivL has infinite number of equivalence classes \Longrightarrow\exists infinite fooling set for L.
L is not regular
```


Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
$\boldsymbol{x} \equiv\llcorner\boldsymbol{y} \Longleftrightarrow \boldsymbol{x}, \boldsymbol{y}$ are indistinguishable for \boldsymbol{L}.

Corollary

If $\equiv_{\boldsymbol{L}}$ is finite with \boldsymbol{n} equivalence classes then there is a fooling set \boldsymbol{F} of size \boldsymbol{n} for \boldsymbol{L}.

Corollary

If \equiv_{L} has infinite number of equivalence classes $\Longrightarrow \exists$ infinite fooling set for L.
$\Longrightarrow L$ is not regular.

Equivalence classes as automata

Lemma

For all $x, y \in \Sigma^{*}$, if $[x]_{L}=[y]_{L}$, then for any a $\in \Sigma$, we have $[x a]_{L}=[y a]_{L}$.

```
Proof.
[x]=[y] }\quad\forallw\in\mp@subsup{\Sigma}{}{*}:xw\inL\longleftrightarrowyw\in
```


Equivalence classes as automata

Lemma

For all $x, y \in \Sigma^{*}$, if $[x]_{L}=[y]_{L}$, then for any $a \in \Sigma$, we have $[x a]_{L}=[y a]_{L}$.

Proof.

$[x]=[y] \Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$

Equivalence classes as automata

Lemma

For all $x, y \in \Sigma^{*}$, if $[x]_{L}=[y]_{L}$, then for any $a \in \Sigma$, we have $[x a]_{L}=[y a]_{L}$.

Proof.

$[x]=[y] \Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$
$\Longrightarrow \forall w^{\prime} \in \Sigma^{*}: x a w^{\prime} \in L \Longleftrightarrow$ yaw $^{\prime} \in L$
// w = aw ${ }^{\prime}$

Equivalence classes as automata

Lemma

For all $x, y \in \Sigma^{*}$, if $[x]_{L}=[y]_{L}$, then for any $a \in \Sigma$, we have $[x a]_{L}=[y a]_{L}$.

Proof.

$[x]=[y] \Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$
$\Longrightarrow \forall w^{\prime} \in \Sigma^{*}: x a w^{\prime} \in L \Longleftrightarrow$ yaw $^{\prime} \in L$
// w = aw ${ }^{\prime}$
$\Longrightarrow[x a]_{L}=[y a]_{L}$.

Set of equivalence classes

Lemma

If \boldsymbol{L} has \boldsymbol{n} distinct equivalence classes, then there is a DFA that accepts it using \boldsymbol{n} states.

Proof.

Set of equivalence classes

Lemma

If \boldsymbol{L} has \boldsymbol{n} distinct equivalence classes, then there is a DFA that accepts it using \boldsymbol{n} states.

Proof.

Set of states: $\mathbf{Q}=[L]$
Start state: $s=[\varepsilon]_{L}$.
Accept states: $\boldsymbol{A}=\left\{[x]_{L} \mid x \in L\right\}$
Transition function: $\delta\left([x]_{L}, a\right)=[x a]$
$M=(Q, \Sigma, \delta, s, A)$: The resulting DFA
Clearly, M is a DFA with n states, and it accepts L.

Set of equivalence classes

Lemma

If \boldsymbol{L} has \boldsymbol{n} distinct equivalence classes, then there is a DFA that accepts it using \boldsymbol{n} states.

Proof.

Set of states: $Q=[L]$
Start state: $\boldsymbol{s}=[\varepsilon]_{\mathcal{L}}$.
Accept states: $A=\left\{[x]_{L} \mid x \in L\right\}$
Transition function: $\delta\left([x]_{L}, a\right)=[x a]_{L}$
$M=(Q, \Sigma, \delta, s, A):$ The resulting $D F A$
Clearly, M is a DFA with n states, and it accepts L.

Set of equivalence classes

Lemma

If \mathbf{L} has \boldsymbol{n} distinct equivalence classes, then there is a DFA that accepts it using \boldsymbol{n} states.

Proof.

Set of states: $Q=[L]$
Start state: $\boldsymbol{s}=[\varepsilon]_{\mathcal{L}}$.
Accept states: $\boldsymbol{A}=\left\{[x]_{L} \mid x \in L\right\}$.
Transition function: $\delta\left([x]_{L}, a\right)=[x a]_{L}$
$M=(Q, \Sigma, \delta, s, A)$: The resulting DFA
Clearly, M is a DFA with \boldsymbol{n} states, and it accepts L.

Set of equivalence classes

Lemma

If \boldsymbol{L} has \boldsymbol{n} distinct equivalence classes, then there is a DFA that accepts it using \boldsymbol{n} states.

Proof.

Set of states: $Q=[L]$
Start state: $s=[\varepsilon]_{L}$.
Accept states: $\boldsymbol{A}=\left\{[x]_{L} \mid x \in L\right\}$.
Transition function: $\delta\left([x]_{L}, a\right)=[x a]_{L}$.
$M=(Q, \Sigma, \delta, s, A)$: The resulting DFA.
Clearly, M is a DFA with n states, and it accepts L

Set of equivalence classes

Lemma

If \boldsymbol{L} has \boldsymbol{n} distinct equivalence classes, then there is a DFA that accepts it using \boldsymbol{n} states.

Proof.

Set of states: $Q=[L]$
Start state: $\boldsymbol{s}=[\varepsilon]_{\mathcal{L}}$.
Accept states: $\boldsymbol{A}=\left\{[x]_{L} \mid x \in L\right\}$.
Transition function: $\delta\left([x]_{L}, a\right)=[x a]_{L}$.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$: The resulting DFA.
Clearly, M is a DFA with n states, and it accepts L.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is regular $\Longleftrightarrow \equiv_{L}$ has a finite number of equivalence classes.
If $\equiv_{\boldsymbol{L}}$ is finite with n equivalence classes then there is a DFA M accepting L with exactly n states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set F for \mathbf{L}.
Algorithmic implication: For every DFA M one can find in polynomial time a DFA M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$ and M^{\prime} has the fewest possible states among all such DFAs.

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for \boldsymbol{L}.

Exercise

(1) Given two DFAs M_{1}, M_{2} describe an efficient algorithm to decide if $L\left(M_{1}\right)=L\left(M_{2}\right)$.
(2) Given DFA M, and two states $\boldsymbol{q}, \boldsymbol{q}^{\prime}$ of M, show an efficient algorithm to decide if \boldsymbol{q} and \boldsymbol{q}^{\prime} are distinguishable. (Hint: Use the first part.)
(3) Given a DFA M for a language L, describe an efficient algorithm for computing the minimal automata (as far as the number of states) that accepts L.

