Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

NFAs continued, Closure Properties of Regular Languages

Lecture 5
Tuesday, September 8, 2020

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
 5.1
 Equivalence of NFAs and DFAs

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

- DFAs are special cases of NFAs (easy)
- NFAs accept regular expressions (seen)
- DFAs accept languages accepted by NFAs (shortly)
- Regular expressions for languages accepted by DFAs (later in the course)

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- DFAs are special cases of NFAs (easy)
- NFAs accept regular expressions (seen)
- DFAs accept languages accepted by NFAs (shortly)
- Regular expressions for languages accepted by DFAs (later in the course)

Equivalence of NFAs and DFAs

Theorem

For every NFA N there is a DFA M such that $L(M)=L(N)$.

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
 5.1.1
 The idea of the conversion of NFA to DFA

DFAs are memoryless...

(1) DFA knows only its current state.
(2) The state is the memory.
(3) To design a DFA, answer the question: What minimal info needed to solve problem.

Simulating NFA

Example the first revisited

Previous lecture.. Ran NFA
 on input ababa.

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.
(N1)

configuration: A set of states the automata might be in.
Possible configurations: $\emptyset,\{A\},\{A, B\}$
Big idea: Build a DFA on the configurations.

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.
(N1)

configuration: A set of states the automata might be in.

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.
(N1)

configuration: A set of states the automata might be in.
Possible configurations: $\emptyset,\{A\},\{A, B\} \ldots$
Big idea: Build a DFA on the configurations.

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in.
Possible configurations: $\emptyset,\{A\},\{A, B\} \ldots$
Big idea: Build a DFA on the configurations.

Example

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of \boldsymbol{w} ?
- It needs to know at least $\delta^{*}(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^{*}(s, x a)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^{*}(s, w) \cap A \neq \emptyset$ Key Observation: DFA M simulating N should know current configuration of N. State space of the DFA is $\mathcal{P}(Q)$

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input \boldsymbol{w}.
- What does it need to store after seeing a prefix x of w ?
- It needs to know at least $\delta^{*}(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^{*}(s, x a)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^{*}(s, w) \cap A \neq \emptyset$ Key Observation: DFA M simulating N should know current configuration of N. State space of the DFA is $\mathcal{P}(Q)$.

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input \boldsymbol{w}.
- What does it need to store after seeing a prefix x of \boldsymbol{w} ?
- It needs to know at least $\delta^{*}(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^{*}(s, x a)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^{*}(s, w) \cap A \neq \emptyset$.

Key Observation: DFA M simulating N should know current configuration of N

State space of the DFA is $\mathcal{P}(Q)$

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w ?
- It needs to know at least $\delta^{*}(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^{*}(s, x a)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^{*}(s, w) \cap A \neq \emptyset$.

Key Observation: DFA M simulating N should know current configuration of N.

State space of the DFA is $\mathcal{P}(Q)$.

Example: DFA from NFA

DFA:

Formal Tuple Notation for NFA

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\epsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $\boldsymbol{A} \subseteq Q$ is the set of accepting/final states.
$\delta(q, a)$ for $a \in \Sigma \cup\{\epsilon\}$ is a subset of Q - a set of states.

THE END

(for now)

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 5.1.2
 Algorithm for converting NFA to DFA

Recall I

Extending the transition function to strings

Definition

For NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ and $\boldsymbol{q} \in \boldsymbol{Q}$ the $\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(\boldsymbol{q}, \boldsymbol{w})=\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$
- if $w=a$ where $a \in \Sigma: \quad \delta^{*}(q, a)=\operatorname{creach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(q)} \delta(p, a)\right)$
- if $w=a x$:

$$
\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{ereach}(q)} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)
$$

Recall II

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\}
$$

Subset Construction

NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, s, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA $\boldsymbol{D}=\left(\boldsymbol{Q}^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, s^{\prime}, \boldsymbol{A}^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\operatorname{\epsilon reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q, a \in \Sigma$.

Subset Construction

NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, \boldsymbol{s}, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA $\boldsymbol{D}=\left(Q^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, s^{\prime}, A^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\epsilon \operatorname{reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Subset Construction

NFA $N=(Q, \Sigma, s, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA $\boldsymbol{D}=\left(\boldsymbol{Q}^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, \boldsymbol{s}^{\prime}, \boldsymbol{A}^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\epsilon \operatorname{reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Subset Construction

NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, s, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA $\boldsymbol{D}=\left(\boldsymbol{Q}^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, s^{\prime}, \boldsymbol{A}^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\epsilon \operatorname{reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q, a \in \Sigma$.

Incremental construction

Only build states reachable from $s^{\prime}=\boldsymbol{\epsilon r e a c h}(s)$ the start state of D

$$
\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)
$$

An optimization: Incremental algorithm

- Build D beginning with start state $s^{\prime}==\epsilon \operatorname{reach}(s)$
- For each existing state $\boldsymbol{X} \subseteq Q$ consider each $\boldsymbol{a} \in \Sigma$ and calculate the state $U=\boldsymbol{\delta}^{\prime}(X, a)=\cup_{q \in X} \boldsymbol{\delta}^{*}(q, a)$ and add a transition.

To compute $Z_{q, a}=\delta^{*}(q, a)$ - set of all states reached from q on character a

- Compute $\boldsymbol{X}_{1}=\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$
- Compute $\boldsymbol{Y}_{1}=\cup_{\boldsymbol{p} \in \boldsymbol{X}_{1}} \delta(\boldsymbol{p}, \boldsymbol{a})$
- Compute $Z_{q, a}=\operatorname{\epsilon reach}(\boldsymbol{Y})=\cup_{r \in Y_{1}}$ ereach (r)
- If \boldsymbol{U} is a new state add it to reachable states that need to be explored

An optimization: Incremental algorithm

- Build D beginning with start state $s^{\prime}==\epsilon \operatorname{reach}(s)$
- For each existing state $\boldsymbol{X} \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U=\boldsymbol{\delta}^{\prime}(X, a)=\cup_{q \in X} \boldsymbol{\delta}^{*}(\boldsymbol{q}, a)$ and add a transition.
To compute $\boldsymbol{Z}_{\boldsymbol{q}, \mathrm{a}}=\boldsymbol{\delta}^{*}(\boldsymbol{q}, \boldsymbol{a})$ - set of all states reached from \boldsymbol{q} on character \boldsymbol{a}
- Compute $\boldsymbol{X}_{1}=\boldsymbol{\operatorname { r r e a c h }}(\boldsymbol{q})$
- Compute $\boldsymbol{Y}_{1}=\cup_{p \in X_{1}} \boldsymbol{\delta}(\boldsymbol{p}, \boldsymbol{a})$
- Compute $\boldsymbol{Z}_{\boldsymbol{q}, \boldsymbol{a}}=\boldsymbol{\epsilon r e a c h}(\boldsymbol{Y})=\cup_{\boldsymbol{r} \in \boldsymbol{Y}_{1}} \boldsymbol{\epsilon r e a c h}(\boldsymbol{r})$
- If U is a new state add it to reachable states that need to be explored

An optimization: Incremental algorithm

- Build D beginning with start state $s^{\prime}==\epsilon \operatorname{reach}(s)$
- For each existing state $\boldsymbol{X} \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U=\boldsymbol{\delta}^{\prime}(X, a)=\cup_{q \in X} \boldsymbol{\delta}^{*}(\boldsymbol{q}, a)$ and add a transition.
To compute $\boldsymbol{Z}_{\boldsymbol{q}, \mathrm{a}}=\boldsymbol{\delta}^{*}(\boldsymbol{q}, \boldsymbol{a})$ - set of all states reached from \boldsymbol{q} on character \boldsymbol{a}
- Compute $\boldsymbol{X}_{1}=\boldsymbol{\operatorname { r r e a c h }}(\boldsymbol{q})$
- Compute $\boldsymbol{Y}_{1}=\cup_{p \in X_{1}} \boldsymbol{\delta}(\boldsymbol{p}, \boldsymbol{a})$
- Compute $\boldsymbol{Z}_{\boldsymbol{q}, \boldsymbol{a}}=\boldsymbol{\epsilon r e a c h}(\boldsymbol{Y})=\cup_{\boldsymbol{r} \in \boldsymbol{Y}_{1}} \boldsymbol{\epsilon r e a c h}(\boldsymbol{r})$
- If \boldsymbol{U} is a new state add it to reachable states that need to be explored.

THE END

(for now)

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
 5.1.3
 Proof of correctness of conversion of NFA to DFA

Proof of Correctness

Theorem
Let $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, s, \delta, \boldsymbol{A})$ be a NFA and let $\boldsymbol{D}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, \boldsymbol{A}^{\prime}\right)$ be a DFA constructed from N via the subset construction. Then $L(N)=L(D)$.

Stronger claim

Lemma
For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$
Proof by induction on $|w|$

Proof of Correctness

Theorem
 Let $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, s, \delta, \boldsymbol{A})$ be a NFA and let $\boldsymbol{D}=\left(\boldsymbol{Q}^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, s^{\prime}, \boldsymbol{A}^{\prime}\right)$ be a DFA constructed from N via the subset construction. Then $L(N)=L(D)$.

Stronger claim:
Lemma
For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$.
Proof by induction on $|w|$

Proof of Correctness

Theorem
 Let $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, s, \delta, \boldsymbol{A})$ be a NFA and let $\boldsymbol{D}=\left(\boldsymbol{Q}^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, s^{\prime}, \boldsymbol{A}^{\prime}\right)$ be a DFA constructed from N via the subset construction. Then $L(N)=L(D)$.

Stronger claim:
Lemma
For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$.
Proof by induction on $|w|$.

Proof continued I

Lemma

For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$.

Proof:

Base case: $w=\boldsymbol{\epsilon}$.
$\delta_{N}^{*}(s, \epsilon)=\epsilon \operatorname{reach}(s)$.
$\delta_{D}^{*}\left(s^{\prime}, \epsilon\right)=s^{\prime}=\epsilon \operatorname{reach}(s)$ by definition of s^{\prime}.

Proof continued II

Lemma

For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$.
Inductive step: $w=x a \quad$ (Note: suffix definition of strings)
$\delta_{N}^{*}(s, x a)=\cup_{p \in \delta_{N}^{*}(s, x)} \delta_{N}^{*}(p, a)$ by inductive definition of δ_{N}^{*}
$\delta_{D}^{*}\left(S^{\prime}, x a\right)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)$ by inductive definition of δ_{D}^{*}
By inductive hypothesis: $Y=\delta_{N}^{*}(s, x)=\delta_{D}^{*}(s, x)$
Thus $\delta_{N}^{*}(s, x a)=\cup_{p \in Y} \delta_{N}^{*}(p, a)=\delta_{D}(Y, a)$ by definition of δ_{D}.
Therefore,
$\delta_{N}^{*}(s, x a)=\delta_{D}(Y, a)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)=\delta_{M}^{*}\left(s^{\prime}, x a\right)$. which is what we need

Proof continued II

Lemma

For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$.
Inductive step: $w=x a \quad$ (Note: suffix definition of strings)
$\delta_{N}^{*}(s, x a)=\cup_{p \in \delta_{N}^{*}(s, x)} \delta_{N}^{*}(p, a)$ by inductive definition of δ_{N}^{*}
$\delta_{D}^{*}\left(s^{\prime}, x a\right)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)$ by inductive definition of δ_{D}^{*}

Therefore,
$\delta_{N}^{*}(\boldsymbol{s}, \boldsymbol{x a})=\delta_{D}(Y, a)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)=\delta_{M}^{*}\left(s^{\prime}, x a\right)$. which is what we need

Proof continued II

Lemma

For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$.
Inductive step: $w=x a \quad$ (Note: suffix definition of strings)
$\delta_{N}^{*}(s, x a)=\cup_{p \in \delta_{N}^{*}(s, x)} \delta_{N}^{*}(p, a)$ by inductive definition of δ_{N}^{*}
$\delta_{D}^{*}\left(s^{\prime}, x a\right)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)$ by inductive definition of δ_{D}^{*}
By inductive hypothesis: $Y=\delta_{N}^{*}(s, x)=\delta_{D}^{*}(s, x)$
Thus $\delta_{N}^{*}(s, x a)=\cup_{p \in Y} \delta_{N}^{*}(p, a)=\delta_{D}(Y, a)$ by definition of δ_{D}.
Therefore,
$\delta_{N}^{*}(s, x a)=\delta_{D}(Y, a)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)=\delta_{M}^{*}\left(s^{\prime}, x a\right)$. which is what we need

Proof continued II

Lemma

For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$.
Inductive step: $\boldsymbol{w}=\boldsymbol{x a} \quad$ (Note: suffix definition of strings)
$\delta_{N}^{*}(s, x a)=\cup_{p \in \delta_{N}^{*}(s, x)} \delta_{N}^{*}(p, a)$ by inductive definition of δ_{N}^{*}
$\delta_{D}^{*}\left(s^{\prime}, x a\right)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)$ by inductive definition of δ_{D}^{*}
By inductive hypothesis: $Y=\delta_{N}^{*}(s, x)=\delta_{D}^{*}(s, x)$
Thus $\delta_{N}^{*}(s, x a)=\cup_{p \in Y} \delta_{N}^{*}(p, a)=\delta_{D}(Y, a)$ by definition of δ_{D}.

Therefore,
 $\delta_{N}^{*}(s, x a)=\delta_{D}(Y, a)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)=\delta_{M}^{*}\left(s^{\prime}, x a\right)$. which is what we need

Proof continued II

Lemma

For every string $w, \delta_{N}^{*}(s, w)=\delta_{D}^{*}\left(s^{\prime}, w\right)$.
Inductive step: $w=x a \quad$ (Note: suffix definition of strings)
$\delta_{N}^{*}(s, x a)=\cup_{p \in \delta_{N}^{*}(s, x)} \delta_{N}^{*}(p, a)$ by inductive definition of δ_{N}^{*}
$\delta_{D}^{*}\left(s^{\prime}, x a\right)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)$ by inductive definition of δ_{D}^{*}
By inductive hypothesis: $Y=\delta_{N}^{*}(s, x)=\delta_{D}^{*}(s, x)$
Thus $\delta_{N}^{*}(s, x a)=\cup_{p \in Y} \delta_{N}^{*}(p, a)=\delta_{D}(Y, a)$ by definition of δ_{D}.
Therefore,
$\delta_{N}^{*}(s, x a)=\delta_{D}(Y, a)=\delta_{D}\left(\delta_{D}^{*}(s, x), a\right)=\delta_{M}^{*}\left(s^{\prime}, x a\right)$. which is what we need.

THE END

(for now)

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 5.2
 Closure Properties of Regular Languages

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

```
Regular language closed under many operations:
    - union, concatenation, Kleene star via inductive definition or NFAs
    - complement, union, intersection via DFAs
    - homomorphism, inverse homomorphism, reverse,...
Different representations allow for flexibility in proofs.
```


Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFAs
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs.

Example: PREFIX

Let L be a language over Σ.
Definition
$\operatorname{PREFIX}(L)=\left\{w \mid w x \in L, x \in \Sigma^{*}\right\}$

```
Theorem
If L}\mathrm{ is regular then PREFIX(L) is regular
Let M = (Q, \Sigma, \delta,s,A) be a DFA that recognizes L
X={q\inQ | s can reach q in M} Y={q\inQ | q can reach some state in A}
Create new DFA }\mp@subsup{M}{}{\prime}=(Q,\Sigma,\delta,s,Z
Claim: L(M') = PREFIX(L)
```


Example: PREFIX

Let L be a language over Σ.
Definition
$\operatorname{PREFIX}(L)=\left\{w \mid w x \in L, x \in \Sigma^{*}\right\}$

Theorem

If L is regular then $\operatorname{PREFIX}(L)$ is regular.
Let $M=(Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L
$X=\{q \in Q \mid s$ can reach q in $M\} Y=\{q \in Q \mid q$ can reach some state in $A\}$
Create new DFA $M^{\prime}=(Q, \Sigma, \delta, s, Z)$
Claim: $L\left(M^{\prime}\right)=\operatorname{PREFIX}(L)$

Example: PREFIX

Let L be a language over Σ.

Definition
 $\operatorname{PREFIX}(L)=\left\{w \mid w x \in L, x \in \Sigma^{*}\right\}$

Theorem
 If L is regular then $\operatorname{PREFIX}(L)$ is regular.

Let $M=(Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L
$X=\{q \in Q \mid s$ can reach q in $M\} Y=\{q \in Q \mid q$ can reach some state in $A\}$
Create new DFA $M^{\prime}=(Q, \Sigma, \delta, s, Z)$
Claim: $L\left(M^{\prime}\right)=$ PREFIX (L)

Example: PREFIX

Let L be a language over Σ.

Definition $\operatorname{PREFIX}(L)=\left\{w \mid w x \in L, x \in \Sigma^{*}\right\}$

Theorem
 If L is regular then $\operatorname{PREFIX}(L)$ is regular.

Let $M=(Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L $\boldsymbol{X}=\{\boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{s}$ can reach \boldsymbol{q} in $\boldsymbol{M}\} \gamma=\{q \in Q \mid q$ can reach some state in $A\}$

Create new DFA $M^{\prime}=(Q, \Sigma, \delta, s, Z)$
Claim: $L\left(M^{\prime}\right)=\operatorname{PREFIX}(L)$

Example: PREFIX

Let L be a language over Σ.

Definition
 $\operatorname{PREFIX}(L)=\left\{w \mid w x \in L, x \in \Sigma^{*}\right\}$

Theorem

If L is regular then $\operatorname{PREFIX}(L)$ is regular.
Let $M=(Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L $\boldsymbol{X}=\{\boldsymbol{q} \in Q \mid \boldsymbol{s}$ can reach \boldsymbol{q} in $M\} \boldsymbol{Y}=\{\boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{q}$ can reach some state in $\boldsymbol{A}\}$

Create new DFA $M^{\prime}=(Q, \Sigma, \delta, s, Z)$
Claim: $L\left(M^{\prime}\right)=\operatorname{PREFIX}(L)$

Example: PREFIX

Let L be a language over Σ.

Definition $\operatorname{PREFIX}(L)=\left\{w \mid w x \in L, x \in \Sigma^{*}\right\}$

Theorem

If L is regular then $\operatorname{PREFIX}(L)$ is regular.
Let $M=(Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L $\boldsymbol{X}=\{\boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{s}$ can reach \boldsymbol{q} in $M\} \boldsymbol{Y}=\{\boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{q}$ can reach some state in $\boldsymbol{A}\}$ $Z=X \cap Y$
Create new DFA $M^{\prime}=(Q, \Sigma, \delta, s, Z)$
Claim: $L\left(M^{\prime}\right)=$ PREFIX (L)

Example: PREFIX

Let L be a language over Σ.

Definition $\operatorname{PREFIX}(L)=\left\{w \mid w x \in L, x \in \Sigma^{*}\right\}$

Theorem

If L is regular then $\operatorname{PREFIX}(L)$ is regular.
Let $M=(Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L $\boldsymbol{X}=\{\boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{s}$ can reach \boldsymbol{q} in $M\} \boldsymbol{Y}=\{\boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{q}$ can reach some state in $\boldsymbol{A}\}$ $Z=X \cap Y$
Create new DFA $M^{\prime}=(\boldsymbol{Q}, \Sigma, \delta, s, Z)$
Claim: $L\left(M^{\prime}\right)=\operatorname{PREFIX}(L)$.

Exercise: SUFFIX

Let L be a language over Σ.

Definition
 $\operatorname{SUFFIX}(L)=\left\{w \mid x w \in L, x \in \Sigma^{*}\right\}$

Prove the following:
Theorem
If L is regular then $\operatorname{PREFIX}(\mathrm{L})$ is regular.

Exercise: SUFFIX

An alternative "proof" using a figure

THE END

(for now)

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
 5.3
 Algorithm for converting NFA into regular expression

Stage 0: Input

Stage 1: Normalizing

Stage 2: Remove state A

\Longrightarrow

Stage 4: Redrawn without old edges

Stage 4: Removing B

Stage 5: Redraw

Stage 6: Removing C

Stage 7: Redraw

$\Rightarrow \rightarrow$ init $\left(a b^{*} a+b\right)(a+b)^{*} \rightarrow$

Stage 8: Extract regular expression

Thus, this automata is equivalent to the regular expression

$$
\left(a b^{*} a+b\right)(a+b)^{*}
$$

THE END

(for now)

