Non-deterministic Finite Automata (NFAs)

Lecture 4
Thursday, September 3, 2020

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
4.1

NFA Introduction

Non-deterministic Finite State Automata by example When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example II but only if it is made out of silver.

Non-deterministic Finite State Automata by example II but only if it is made out of silver.

Non-deterministic Finite State Automata by example II

but only if it is made out of silver.

More efficient
 NFA:

Not the point... ...because DFA can still do it ef-

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state a on same letter $a \in \sum$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state \boldsymbol{q} on same letter $\boldsymbol{a} \in \Sigma$ multiple possible states
- No transitions from \boldsymbol{q} on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state \boldsymbol{q} on same letter $\boldsymbol{a} \in \Sigma$ multiple possible states
- No transitions from \boldsymbol{q} on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

NFA behavior

Machine on input string w from state \boldsymbol{q} can lead to set of states (could be empty)

- From q_{e} on 1
- From q_{ε} on 0
- From q_{0} on ε
- From $\boldsymbol{a}_{\varepsilon}$ on 01
- From q_{00} on 00

NFA behavior

Machine on input string w from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From q_{e} on 0
- From q_{0} on ε
- From q_{ε} on 01
- From a_{00} on 00

NFA behavior

Machine on input string \boldsymbol{w} from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From $\boldsymbol{q}_{\varepsilon}$ on 0
- From q_{0} on ε
- From q_{ε} on 01
- From q_{00} on 00

NFA behavior

Machine on input string w from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From $\boldsymbol{q}_{\varepsilon}$ on 0
- From q_{0} on ε
- From q_{ε} on 01
- From q_{00} on 00

NFA behavior

Machine on input string \boldsymbol{w} from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From $\boldsymbol{q}_{\varepsilon}$ on 0
- From \boldsymbol{q}_{0} on ε
- From $\boldsymbol{q}_{\varepsilon}$ on 01
- From qoo on 00

NFA behavior

Machine on input string w from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From $\boldsymbol{q}_{\varepsilon}$ on 0
- From \boldsymbol{q}_{0} on ε
- From $\boldsymbol{q}_{\varepsilon}$ on 01
- From \boldsymbol{q}_{00} on 00

NFA acceptance: informal

Informal definition: An NFA \boldsymbol{N} accepts a string \boldsymbol{w} iff some accepting state is reached by \boldsymbol{N} from the start state on input \boldsymbol{w}.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N)=\{w \mid N$ accepts $w\}$.

NFA acceptance: informal

Informal definition: An NFA \boldsymbol{N} accepts a string \boldsymbol{w} iff some accepting state is reached by \boldsymbol{N} from the start state on input \boldsymbol{w}.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N)=\{w \mid N$ accepts $w\}$.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in $1^{*} 01$ accepted?
- What is the language accepted by N ?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in $1^{*} 01$ accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

> Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in $1^{*} 01$ accepted?
- What is the language accepted by N ?

[^0]
NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in $1^{*} 01$ accepted?
- What is the language accepted by N ?

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in $1^{*} 01$ accepted?
- What is the language accepted by N ?

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in $1^{*} 01$ accepted?
- What is the language accepted by N ?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

Simulating NFA

Example the first

(N1)

Run it on input ababa. Idea: Keep track of the states where the NFA might be at any given time.

Simulating NFA

Example the first

Remaining input: ababa.

Simulating NFA

Example the first

Remaining input: ababa.

Remaining input: baba.

Simulating NFA

Example the first

Remaining input: baba.

Simulating NFA

Example the first

Remaining input: baba.

Remaining input: aba.

Simulating NFA

Example the first

Remaining input: aba.

Simulating NFA

Example the first

Remaining input: aba.

Remaining input: $\boldsymbol{b a}$.

Simulating NFA

Example the first

Remaining input: ba.

Simulating NFA

Example the first

Remaining input: ba.

Remaining input: \boldsymbol{a}.

Simulating NFA

Example the first

Remaining input: \boldsymbol{a}.

Simulating NFA

Example the first

Remaining input: a.

Remaining input: ε.

Simulating NFA

Example the first

Remaining input: ε.
Accepts: ababa.

An exercise

For you to think about..
A. What is the language that the following NFA accepts?

B. What is the minimal number of states in a DFA that recognizes the same language?

THE END

(for now)

Algorithms \& Models of Computation

4.1.1
 Formal definition of NFA

Reminder: Power set

Q : a set. Power set of \boldsymbol{Q} is: $\mathcal{P}(\boldsymbol{Q})=2^{\boldsymbol{Q}}=\{\boldsymbol{X} \mid \boldsymbol{X} \subseteq \boldsymbol{Q}\}$ is set of all subsets of \boldsymbol{Q}.

Example

$Q=\{1,2,3,4\}$

$$
\mathcal{P}(\boldsymbol{Q})=\left\{\begin{array}{c}
\{1,2,3,4\}, \\
\{2,3,4\},\{1,3,4\},\{1,2,4\},\{1,2,3\}, \\
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \\
\{1\},\{2\},\{3\},\{4\}, \\
\{ \}
\end{array}\right\}
$$

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- \boldsymbol{Q} is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.
$\delta(q, a)$ for $a \in \Sigma \cup\{\varepsilon\}$ is a subset of Q - a set of states.

Example

- $\boldsymbol{Q}=\left\{q_{e}, q_{0}, q_{00}, q_{p}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=\boldsymbol{t}_{\varepsilon}$
- $A=\left\{q_{p}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, \boldsymbol{q}_{p}\right\}$

Example

- $\boldsymbol{Q}=\left\{\boldsymbol{q}_{\varepsilon}, \boldsymbol{q}_{0}, \boldsymbol{q}_{00}, \boldsymbol{q}_{p}\right\}$
- $\boldsymbol{\Sigma}=\{0,1\}$
- $A=\left\{q_{p}\right\}$

Example

- $\boldsymbol{Q}=\left\{\boldsymbol{q}_{\varepsilon}, \boldsymbol{q}_{0}, \boldsymbol{q}_{00}, \boldsymbol{q}_{p}\right\}$
- $\Sigma=\{0,1\}$

Example

- $\boldsymbol{Q}=\left\{\boldsymbol{q}_{\varepsilon}, \boldsymbol{q}_{0}, \boldsymbol{q}_{00}, \boldsymbol{q}_{p}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $A=\left\{q_{p}\right\}$

Example

- $\boldsymbol{Q}=\left\{\boldsymbol{q}_{\varepsilon}, \boldsymbol{q}_{0}, \boldsymbol{q}_{00}, \boldsymbol{q}_{p}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $\boldsymbol{s}=q^{\prime}$

Example

- $\boldsymbol{Q}=\left\{\boldsymbol{q}_{\varepsilon}, \boldsymbol{q}_{0}, \boldsymbol{q}_{00}, \boldsymbol{q}_{p}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=\boldsymbol{q}_{\varepsilon}$
- $A=\left\{q_{p}\right\}$

Example

- $\boldsymbol{Q}=\left\{\boldsymbol{q}_{\varepsilon}, \boldsymbol{q}_{0}, \boldsymbol{q}_{00}, \boldsymbol{q}_{p}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=\boldsymbol{q}_{\varepsilon}$
- $\boldsymbol{A}=\left\{q_{p}\right\}$

Example

- $\boldsymbol{Q}=\left\{\boldsymbol{q}_{\varepsilon}, \boldsymbol{q}_{0}, \boldsymbol{q}_{00}, \boldsymbol{q}_{p}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=\boldsymbol{q}_{\varepsilon}$
- $A=\left\{q_{p}\right\}$

Example

$$
\begin{array}{ll}
\delta\left(\boldsymbol{q}_{\varepsilon}, \varepsilon\right)=\left\{\boldsymbol{q}_{\varepsilon}\right\} & \delta\left(\boldsymbol{q}_{0}, \varepsilon\right)=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{00}\right\} \\
\delta\left(\boldsymbol{q}_{\varepsilon}, 0\right)=\left\{\boldsymbol{q}_{\varepsilon}, \boldsymbol{q}_{0}\right\} & \delta\left(\boldsymbol{q}_{0}, 0\right)=\left\{\boldsymbol{q}_{00}\right\} \\
\delta\left(\boldsymbol{q}_{\varepsilon}, 1\right)=\left\{\boldsymbol{q}_{\varepsilon}\right\} & \delta\left(\boldsymbol{q}_{0}, 1\right)=\{ \} \\
\delta\left(\boldsymbol{q}_{00}, \varepsilon\right)=\left\{\boldsymbol{q}_{00}\right\} & \delta\left(\boldsymbol{q}_{\boldsymbol{p}}, \varepsilon\right)=\left\{\boldsymbol{q}_{p}\right\} \\
\delta\left(\boldsymbol{q}_{00}, 0\right)=\{ \} & \delta\left(\boldsymbol{q}_{p}, 0\right)=\left\{\boldsymbol{q}_{p}\right\} \\
\delta\left(\boldsymbol{q}_{00}, 1\right)=\left\{\boldsymbol{q}_{p}\right\} & \delta\left(\boldsymbol{q}_{p}, 1\right)=\left\{\boldsymbol{q}_{p}\right\}
\end{array}
$$

THE END

(for now)

4.1.2
 Extending the transition function to strings

Extending the transition function to strings

(1) NFA $N=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A})$
© $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup\{\varepsilon\}$
(Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$

- $\delta^{*}(\boldsymbol{q}, w)$: set of states reachable on input w starting in state q

Extending the transition function to strings

(1) NFA $N=(Q, \Sigma, \delta, s, A)$
(2) $\delta(\boldsymbol{q}, a)$: set of states that N can go to from \boldsymbol{q} on reading $a \in \Sigma \cup\{\varepsilon\}$.

- Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$
(4) $\delta^{*}(q, w)$: set of states reachable on input w starting in state q

Extending the transition function to strings

(1) NFA $N=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A})$
(2) $\delta(\boldsymbol{q}, a)$: set of states that N can go to from \boldsymbol{q} on reading $a \in \Sigma \cup\{\varepsilon\}$.
(Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$

- $\delta^{*}(q, w)$: set of states reachable on input w starting in state q

Extending the transition function to strings

(1) NFA $N=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A})$
(2) $\delta(\boldsymbol{q}, a)$: set of states that N can go to from \boldsymbol{q} on reading $a \in \Sigma \cup\{\varepsilon\}$.
(3) Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$

- $\delta^{*}(\boldsymbol{q}, w)$: set of states reachable on input w starting in state \boldsymbol{q}.

Extending the transition function to strings

Definition

For NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, \delta, \boldsymbol{s}, \boldsymbol{A})$ and $\boldsymbol{q} \in \boldsymbol{Q}$ the $\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only ε-transitions.

Definition

For $X \subseteq Q$: $\operatorname{areach}(X)=U_{x \in X} \operatorname{ereach}(x)$.

Extending the transition function to strings

Definition

For NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ and $\boldsymbol{q} \in \boldsymbol{Q}$ the $\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only ε-transitions.

Definition

For $\boldsymbol{X} \subseteq \boldsymbol{Q}: \operatorname{\epsilon reach}(\boldsymbol{X})=\bigcup_{x \in \boldsymbol{X}} \operatorname{\epsilon reach}(\boldsymbol{x})$.

Extending the transition function to strings

$\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$: set of all states that \boldsymbol{q} can reach using only ε-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $\boldsymbol{w}=\varepsilon, \delta^{*}(\boldsymbol{q}, \boldsymbol{w})=\boldsymbol{\operatorname { r r e a c h }}(\boldsymbol{q})$
- if $w=a$ where $a \in \Sigma: \quad \delta^{*}(q, a)=$ ereach

Extending the transition function to strings

$\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$: set of all states that \boldsymbol{q} can reach using only $\boldsymbol{\varepsilon}$-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $\boldsymbol{w}=\varepsilon, \delta^{*}(\boldsymbol{q}, \boldsymbol{w})=\boldsymbol{\operatorname { r r e a c h }}(\boldsymbol{q})$
- if $w=a$ where $a \in \Sigma$:

$$
\delta^{*}(q, a)=\operatorname{rreach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(q)} \delta(p, a)\right)
$$

Extending the transition function to strings

$\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$: set of all states that \boldsymbol{q} can reach using only $\boldsymbol{\varepsilon}$-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $\boldsymbol{w}=\varepsilon, \delta^{*}(\boldsymbol{q}, \boldsymbol{w})=\boldsymbol{\operatorname { r r e a c h }}(\boldsymbol{q})$
- if $w=a$ where $a \in \Sigma$:

$$
\delta^{*}(q, a)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(q)} \delta(p, a)\right)
$$

$$
\delta^{*}(q, w)=\operatorname{rreach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)
$$

Transition for strings: $w=a x$

$$
\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)
$$

(2) $N=\bigcup_{p \in R} \delta^{*}(p, a)$: All the states reachable from q with the letter a.

Transition for strings: $w=a x$

$$
\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \epsilon \text { frach }(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)
$$

- $R=\operatorname{\epsilon reach}(\boldsymbol{q}) \Longrightarrow \delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta *(p, a)} \delta^{*}(r, x)\right)$

(2) $N=\bigcup \delta^{*}(p, a):$ All the states reachable from q with the letter a

(3) $\delta^{*}(q, w)=\epsilon$ reach

Transition for strings: $\mathrm{w}=\mathrm{ax}$

$$
\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(\boldsymbol{q})}\left(\bigcup_{r \in \delta^{*}(\boldsymbol{p}, \mathrm{a})} \delta^{*}(r, x)\right)\right)
$$

(1) $R=\operatorname{\epsilon reach}(\boldsymbol{q}) \Longrightarrow \delta^{*}(\boldsymbol{q}, w)=\epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^{*}(p, \mathrm{a})} \delta^{*}(r, x)\right)$
(2) $N=\bigcup_{p \in R} \delta^{*}(\boldsymbol{p}, a)$: All the states reachable from \boldsymbol{q} with the letter a.
(3) $\delta^{*}(q, w)=$ ereach

Transition for strings: $w=a x$

$$
\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(\boldsymbol{q})}\left(\bigcup_{r \in \delta^{*}(\boldsymbol{p}, \mathrm{a})} \delta^{*}(r, x)\right)\right)
$$

(1) $R=\operatorname{\epsilon reach}(\boldsymbol{q}) \Longrightarrow \delta^{*}(\boldsymbol{q}, w)=\epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^{*}(p, \mathrm{a})} \delta^{*}(r, x)\right)$
(2) $N=\bigcup_{p \in R} \delta^{*}(\boldsymbol{p}, a)$: All the states reachable from \boldsymbol{q} with the letter \boldsymbol{a}.

- $\delta^{*}(\boldsymbol{q}, w)=\operatorname{\epsilon reach}\left(\bigcup_{r \in N} \delta^{*}(r, x)\right)$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\} .
$$

Important: Formal definition of the language of NFA above uses δ^{*} and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^{*} takes care of that.

Formal definition of language accepted by N

Definition

```
A string \(w\) is accepted by NFA \(N\) if \(\delta_{N}^{*}(s, w) \cap A \neq \emptyset\).
```


Definition

The language $L(N)$ accepted by a NFA $N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\} .
$$

Important: Formal definition of the language of NFA above uses $\boldsymbol{\delta}^{*}$ and not $\boldsymbol{\delta}$. As such, one does not need to include ε-transitions closure when specifying δ, since $\boldsymbol{\delta}^{*}$ takes care of that.

Example

What is:

- $\delta^{*}(s, \epsilon)$
- $\delta^{*}(s, 0)$
- $\delta^{*}(c, 0)$
- $\delta^{*}(\boldsymbol{b}, 00)$

Example

What is:

- $\delta^{*}(s, \epsilon)$
- $\delta^{*}(s, 0)$
- $\delta^{*}(c, 0)$
- $\delta^{*}(b, 00)$

Example

What is:

- $\delta^{*}(s, \epsilon)$
- $\delta^{*}(s, 0)$
- $\delta^{*}(c, 0)$
- $\delta^{*}(b, 00)$

Example

What is:

- $\delta^{*}(s, \epsilon)$
- $\delta^{*}(s, 0)$
- $\delta^{*}(c, 0)$
- $\delta^{*}(b, 00)$

Another definition of computation

Definition

$\boldsymbol{q} \xrightarrow{\boldsymbol{w}} \boldsymbol{N} \boldsymbol{p}$: State \boldsymbol{p} of NFA \boldsymbol{N} is reachable from \boldsymbol{q} on $\boldsymbol{w} \Longleftrightarrow$ there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{k}$ and a sequence $x_{1}, x_{2}, \ldots, x_{k}$ where $x_{i} \in \Sigma \cup\{\varepsilon\}$, for each i, such that:

- $r_{0}=\boldsymbol{q}$,
- for each $i, r_{i+1} \in \boldsymbol{\delta}^{*}\left(r_{i}, x_{i+1}\right)$,
- $r_{k}=p$, and
- $w=x_{1} x_{2} x_{3} \cdots x_{k}$.

Definition

$\delta_{N}^{*}(q, w)=\{p \in Q \mid q \xrightarrow{w} N p\}$.

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

THE END

(for now)

Algorithms \& Models of Computation

4.2 Constructing NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Example

Strings that represent decimal numbers.

Example

Strings that represent decimal numbers.

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring\}
- \{strings that contain CS374 and CS473 as substrings\}

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring\} - \{strings that contain CS374 and CS473 as substrings\}

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring\}
- \{strings that contain CS374 and CS473 as substrings

Example

$L_{k}=\{$ bitstrings that have a $1 k$ positions from the end $\}$

DFA for same task is much bigger...
$L_{4}=\{$ bitstrings that have a 1 in fourth position from the end $\}$

A simple transformation

Theorem

For every NFA N there is another NFA N^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ and such that N^{\prime} has the following two properties:

- N^{\prime} has single final state \boldsymbol{f} that has no outgoing transitions
- The start state s of N is different from f

THE END

(for now)

4.3

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem

For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$.

Closure under union

Theorem

For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$.

Closure under concatenation

Theorem

For any two NFAs \boldsymbol{N}_{1} and \boldsymbol{N}_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cdot L\left(N_{2}\right)$.

Closure under concatenation

Theorem

For any two NFAs \boldsymbol{N}_{1} and \boldsymbol{N}_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cdot L\left(N_{2}\right)$.

Closure under Kleene star

Theorem

For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Closure under Kleene star

Theorem

For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Closure under Kleene star

Theorem

For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Does not work! Why?

Closure under Kleene star

Theorem

For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

THE END

(for now)

Algorithms \& Models of Computation
4.4

NFAs capture Regular Languages

Regular Languages Recap

Regular Languages

\emptyset regular
$\{\epsilon\}$ regular
$\{a\}$ regular for $a \in \Sigma$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are
R^{*} is regular if R is

Regular Expressions

```
\emptyset denotes \emptyset
\epsilon denotes {\epsilon}
a denote {a}
r
r}\mp@subsup{r}{1}{}\mp@subsup{r}{2}{}\mathrm{ denotes }\mp@subsup{R}{1}{}\mp@subsup{R}{2}{
r* denote R*
```

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

NFAs and Regular Language

Theorem

For every regular language L there is an NFA N such that $L=L(N)$.
Proof strategy:

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Base cases: $\emptyset,\{\varepsilon\},\{a\}$ for $a \in \Sigma$.

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ regular expressions and $\boldsymbol{r}=\boldsymbol{r}_{1}+\boldsymbol{r}_{2}$.

```
By induction there are NFAs N
L(N
s.t L(N)=L(N
- r= r 
- r = (r}\mp@subsup{r}{1}{}\mp@subsup{)}{}{*}\mathrm{ . Use closure of NFA languages under Kleene star
```


NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$. By induction there are NFAs N_{1}, N_{2} s.t $L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=\boldsymbol{L}\left(\boldsymbol{r}_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence $L(N)=L(r)$
- $r=r_{1} \bullet r_{2}$. Use closure of NFA languages under concatenation
- $r=\left(\boldsymbol{r}_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ regular expressions and $\boldsymbol{r}=\boldsymbol{r}_{1}+\boldsymbol{r}_{2}$. By induction there are NFAs N_{1}, N_{2} s.t $L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA \boldsymbol{N} s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence $L(N)=L(r)$
- $r=r_{1} \circ r_{2}$. Use closure of NFA languages under concatenation
- $r=\left(r_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ regular expressions and $\boldsymbol{r}=\boldsymbol{r}_{1}+\boldsymbol{r}_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence $L(N)=L(r)$

- $\boldsymbol{r}=\boldsymbol{r}_{1} \bullet \boldsymbol{r}_{2}$. Use closure of NFA languages under concatenation
- $r=\left(r_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence $L(N)=L(r)$

- $r=r_{1} \bullet r_{2}$. Use closure of NFA languages under concatenation
- $r=\left(r_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=\boldsymbol{r}_{1}+\boldsymbol{r}_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence $L(N)=L(r)$

- $r=r_{1} \bullet r_{2}$. Use closure of NFA languages under concatenation
- $r=\left(\boldsymbol{r}_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ regular expressions and $\boldsymbol{r}=\boldsymbol{r}_{1}+\boldsymbol{r}_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA \boldsymbol{N} s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence $L(N)=L(r)$

- $\boldsymbol{r}=\boldsymbol{r}_{1} \bullet \boldsymbol{r}_{2}$. Use closure of NFA languages under concatenation
- $\boldsymbol{r}=\left(\boldsymbol{r}_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

Example

$(\varepsilon+0)(1+10)^{*}$

Example

Example

Final NFA simplified slightly to reduce states

THE END

(for now)

[^0]: Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
 to show that a string is not accepted.

