
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

Non-deterministic Finite Automata
(NFAs)
Lecture 4
Thursday, September 3, 2020

LATEXed: September 1, 2020 21:19

Har-Peled (UIUC) CS374 1 Fall 2020 1 / 52

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

4.1
NFA Introduction
FLNAME:4.1.0.0

Har-Peled (UIUC) CS374 2 Fall 2020 2 / 52

Non-deterministic Finite State Automata by example
When you come to a fork in the road, take it.

q

 0,1

q0
 0 q00

 0 q000
 0

 0,1

Har-Peled (UIUC) CS374 3 Fall 2020 3 / 52

Non-deterministic Finite State Automata by example II
..but only if it is made out of silver.

s

 0,1 q ε

p

 ε

q0
 0 q00

 0 q000
 0

Fin

 ε

p1
 1

p11
 1

p111
 1

 ε

 0,1

Har-Peled (UIUC) CS374 4 Fall 2020 4 / 52

Non-deterministic Finite State Automata by example II
..but only if it is made out of silver.

s

 0,1 q ε

p

 ε

q0
 0 q00

 0 q000
 0

Fin

 ε

p1
 1

p11
 1

p111
 1

 ε

 0,1

More efficient
NFA:

s

 0,1 q0 0

p1

 1

q00
 0

Fin

 0

p11
 1

 1

 0,1

Har-Peled (UIUC) CS374 4 Fall 2020 4 / 52

Non-deterministic Finite State Automata by example II
..but only if it is made out of silver.

More efficient
NFA:

s

 0,1 q0 0

p1

 1

q00
 0

Fin

 0

p11
 1

 1

 0,1

Not the point...
...because DFA
can still do it ef-
ficiently.

q

q000

 0, 1

q0
 0 q001

 1

q00 0

 1

 0
 1

 0

q011 1
 1

 0

Har-Peled (UIUC) CS374 4 Fall 2020 4 / 52

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

From state q on same letter a ∈ Σ multiple possible states

No transitions from q on some letters

ε-transitions!

Questions:

Is this a “real” machine?

What does it do?
Har-Peled (UIUC) CS374 5 Fall 2020 5 / 52

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

From state q on same letter a ∈ Σ multiple possible states

No transitions from q on some letters

ε-transitions!

Questions:

Is this a “real” machine?

What does it do?
Har-Peled (UIUC) CS374 5 Fall 2020 5 / 52

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

From state q on same letter a ∈ Σ multiple possible states

No transitions from q on some letters

ε-transitions!

Questions:

Is this a “real” machine?

What does it do?
Har-Peled (UIUC) CS374 5 Fall 2020 5 / 52

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Har-Peled (UIUC) CS374 6 Fall 2020 6 / 52

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Har-Peled (UIUC) CS374 6 Fall 2020 6 / 52

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Har-Peled (UIUC) CS374 6 Fall 2020 6 / 52

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Har-Peled (UIUC) CS374 6 Fall 2020 6 / 52

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Har-Peled (UIUC) CS374 6 Fall 2020 6 / 52

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Har-Peled (UIUC) CS374 6 Fall 2020 6 / 52

NFA acceptance: informal

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Informal definition: An NFA N accepts a string w iff some accepting state is
reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as:
L(N) = {w | N accepts w}.

Har-Peled (UIUC) CS374 7 Fall 2020 7 / 52

NFA acceptance: informal

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Informal definition: An NFA N accepts a string w iff some accepting state is
reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as:
L(N) = {w | N accepts w}.

Har-Peled (UIUC) CS374 7 Fall 2020 7 / 52

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

Har-Peled (UIUC) CS374 8 Fall 2020 8 / 52

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

Har-Peled (UIUC) CS374 8 Fall 2020 8 / 52

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

Har-Peled (UIUC) CS374 8 Fall 2020 8 / 52

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

Har-Peled (UIUC) CS374 8 Fall 2020 8 / 52

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

Har-Peled (UIUC) CS374 8 Fall 2020 8 / 52

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

Har-Peled (UIUC) CS374 8 Fall 2020 8 / 52

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

Har-Peled (UIUC) CS374 8 Fall 2020 8 / 52

Simulating NFA
Example the first

(N1) A B C D E

a,b

a b a b

a,b

Run it on input
ababa.
Idea: Keep track of the states where the NFA might be at any given time.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

Simulating NFA
Example the first

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.

Accepts: ababa.

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 52

An exercise
For you to think about...

A. What is the language that the following NFA accepts?

s

a0

 ε

b0
 ε

c0

 ε

a1 a2
 0

a3
 0 a4

 0 a5
 0

a6 0

 0

b1 b2
 0 b3

 0

b4 0

 0

c1

c2 0

 0

 0

 0

 0

B. What is the minimal number of states in a DFA that recognizes the same language?

Har-Peled (UIUC) CS374 10 Fall 2020 10 / 52

THE END
...

(for now)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 52

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

4.1.1
Formal definition of NFA
FLNAME:4.1.1.0

Har-Peled (UIUC) CS374 12 Fall 2020 12 / 52

Reminder: Power set

Q: a set. Power set of Q is: P(Q) = 2Q = {X | X ⊆ Q} is set of all subsets of Q.

Example

Q = {1, 2, 3, 4}

P(Q) =

{1, 2, 3, 4} ,

{2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,
{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,

{1} , {2} , {3} , {4} ,
{}

Har-Peled (UIUC) CS374 13 Fall 2020 13 / 52

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a five tuple where

Q is a finite set whose elements are called states,

Σ is a finite set called the input alphabet,

δ : Q × Σ ∪ {ε} → P(Q) is the transition function (here P(Q) is the power set
of Q),

s ∈ Q is the start state,

A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.

Har-Peled (UIUC) CS374 14 Fall 2020 14 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 52

Example
Transition function in detail...

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

δ(qε, ε) = {qε}
δ(qε, 0) = {qε, q0}
δ(qε, 1) = {qε}

δ(q0, ε) = {q0, q00}
δ(q0, 0) = {q00}
δ(q0, 1) = {}

δ(q00, ε) = {q00}
δ(q00, 0) = {}
δ(q00, 1) = {qp}

δ(qp, ε) = {qp}
δ(qp, 0) = {qp}
δ(qp, 1) = {qp}

Har-Peled (UIUC) CS374 16 Fall 2020 16 / 52

THE END
...

(for now)

Har-Peled (UIUC) CS374 17 Fall 2020 17 / 52

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

4.1.2
Extending the transition function to strings
FLNAME:4.1.2.0

Har-Peled (UIUC) CS374 18 Fall 2020 18 / 52

Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 52

Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 52

Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 52

Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 52

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set of all states that q
can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition
For X ⊆ Q: εreach(X) =

⋃
x∈X εreach(x).

Har-Peled (UIUC) CS374 20 Fall 2020 20 / 52

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set of all states that q
can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition
For X ⊆ Q: εreach(X) =

⋃
x∈X εreach(x).

Har-Peled (UIUC) CS374 20 Fall 2020 20 / 52

Extending the transition function to strings

εreach(q): set of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ: δ∗(q, a) = εreach

 ⋃
p∈εreach(q)

δ(p, a)

if w = ax : δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)

Har-Peled (UIUC) CS374 21 Fall 2020 21 / 52

Extending the transition function to strings

εreach(q): set of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ: δ∗(q, a) = εreach

 ⋃
p∈εreach(q)

δ(p, a)

if w = ax : δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)

Har-Peled (UIUC) CS374 21 Fall 2020 21 / 52

Extending the transition function to strings

εreach(q): set of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ: δ∗(q, a) = εreach

 ⋃
p∈εreach(q)

δ(p, a)

if w = ax : δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)

Har-Peled (UIUC) CS374 21 Fall 2020 21 / 52

Transition for strings: w = ax
Translation...

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)

1 R = εreach(q) =⇒ δ∗(q,w) = εreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)

2 N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

3 δ∗(q,w) = εreach

(⋃
r∈N

δ∗(r , x)

)
Har-Peled (UIUC) CS374 22 Fall 2020 22 / 52

Transition for strings: w = ax
Translation...

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)

1 R = εreach(q) =⇒ δ∗(q,w) = εreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)

2 N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

3 δ∗(q,w) = εreach

(⋃
r∈N

δ∗(r , x)

)
Har-Peled (UIUC) CS374 22 Fall 2020 22 / 52

Transition for strings: w = ax
Translation...

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)

1 R = εreach(q) =⇒ δ∗(q,w) = εreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)

2 N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

3 δ∗(q,w) = εreach

(⋃
r∈N

δ∗(r , x)

)
Har-Peled (UIUC) CS374 22 Fall 2020 22 / 52

Transition for strings: w = ax
Translation...

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)

1 R = εreach(q) =⇒ δ∗(q,w) = εreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)

2 N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

3 δ∗(q,w) = εreach

(⋃
r∈N

δ∗(r , x)

)
Har-Peled (UIUC) CS374 22 Fall 2020 22 / 52

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Important: Formal definition of the language of NFA above uses δ∗ and not δ. As
such, one does not need to include ε-transitions closure when specifying δ, since δ∗

takes care of that.

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 52

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Important: Formal definition of the language of NFA above uses δ∗ and not δ. As
such, one does not need to include ε-transitions closure when specifying δ, since δ∗

takes care of that.

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 52

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)

δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 52

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)

δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 52

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)

δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 52

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)

δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 52

Another definition of computation

Definition

q w−→N p: State p of NFA N is reachable from q on w ⇐⇒ there exists a
sequence of states r0, r1, . . . , rk and a sequence x1, x2, . . . , xk where xi ∈ Σ ∪ {ε},
for each i , such that:

r0 = q,

for each i , ri+1 ∈ δ∗(ri , xi+1),

rk = p, and

w = x1x2x3 · · · xk .

Definition

δ∗N(q,w) =
{
p ∈ Q

∣∣∣ q w−→N p
}

.

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 52

Why non-determinism?

Non-determinism adds power to the model; richer programming language and
hence (much) easier to “design” programs

Fundamental in theory to prove many theorems

Very important in practice directly and indirectly

Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used
to it and then you will appreciate it slowly.

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 52

THE END
...

(for now)

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 52

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

4.2
Constructing NFAs
FLNAME:4.2.0.0

Har-Peled (UIUC) CS374 28 Fall 2020 28 / 52

DFAs and NFAs

Every DFA is a NFA so NFAs are at least as powerful as DFAs.

NFAs prove ability to “guess and verify” which simplifies design and reduces
number of states

Easy proofs of some closure properties

Har-Peled (UIUC) CS374 29 Fall 2020 29 / 52

Example

Strings that represent decimal numbers.

0 21
.ε, –

53

4

.

0 0,1,2,...,9

1,2,...,9

0,1,2,...,9

0,1,2,...,9

Har-Peled (UIUC) CS374 30 Fall 2020 30 / 52

Example

Strings that represent decimal numbers.

0 21
.ε, –

53

4

.

0 0,1,2,...,9

1,2,...,9

0,1,2,...,9

0,1,2,...,9

Har-Peled (UIUC) CS374 30 Fall 2020 30 / 52

Example

{strings that contain CS374 as a substring}
{strings that contain CS374 or CS473 as a substring}
{strings that contain CS374 and CS473 as substrings}

Har-Peled (UIUC) CS374 31 Fall 2020 31 / 52

Example

{strings that contain CS374 as a substring}
{strings that contain CS374 or CS473 as a substring}
{strings that contain CS374 and CS473 as substrings}

Har-Peled (UIUC) CS374 31 Fall 2020 31 / 52

Example

{strings that contain CS374 as a substring}
{strings that contain CS374 or CS473 as a substring}
{strings that contain CS374 and CS473 as substrings}

Har-Peled (UIUC) CS374 31 Fall 2020 31 / 52

Example

Lk = {bitstrings that have a 1 k positions from the end}

Har-Peled (UIUC) CS374 32 Fall 2020 32 / 52

DFA for same task is much bigger...

L4 = {bitstrings that have a 1 in fourth position from the end}

q
q1000

 0

q0001

 1

q1001
q0010 0

q0011

 1

q1100

 0 1

q1101

q1010 0

q1011 1

q0100 0

q0101 1

q0110 0
q0111

 1

q1110

 0

 1

q1111
 0

 1

 0

 1

 0

 1

 0

 1
 0

 1

 0

 1
 0

 1

 0

 1

 0

 1

Har-Peled (UIUC) CS374 33 Fall 2020 33 / 52

A simple transformation

Theorem
For every NFA N there is another NFA N ′ such that L(N) = L(N ′) and such that
N ′ has the following two properties:

N ′ has single final state f that has no outgoing transitions

The start state s of N is different from f

Har-Peled (UIUC) CS374 34 Fall 2020 34 / 52

THE END
...

(for now)

Har-Peled (UIUC) CS374 35 Fall 2020 35 / 52

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

4.3
Closure Properties of NFAs
FLNAME:4.3.0.0

Har-Peled (UIUC) CS374 36 Fall 2020 36 / 52

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

union

intersection

concatenation

Kleene star

complement

Har-Peled (UIUC) CS374 37 Fall 2020 37 / 52

Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2

Har-Peled (UIUC) CS374 38 Fall 2020 38 / 52

Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2

Har-Peled (UIUC) CS374 38 Fall 2020 38 / 52

Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

Har-Peled (UIUC) CS374 39 Fall 2020 39 / 52

Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

Har-Peled (UIUC) CS374 39 Fall 2020 39 / 52

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

Har-Peled (UIUC) CS374 40 Fall 2020 40 / 52

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?
Har-Peled (UIUC) CS374 41 Fall 2020 41 / 52

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?
Har-Peled (UIUC) CS374 41 Fall 2020 41 / 52

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1q0
ε

ε

Har-Peled (UIUC) CS374 42 Fall 2020 42 / 52

THE END
...

(for now)

Har-Peled (UIUC) CS374 43 Fall 2020 43 / 52

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

4.4
NFAs capture Regular Languages
FLNAME:4.4.0.0

Har-Peled (UIUC) CS374 44 Fall 2020 44 / 52

Regular Languages Recap

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2

R1R2 regular if both are r1r2 denotes R1R2

R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show the operations that
were used to form the language

Har-Peled (UIUC) CS374 45 Fall 2020 45 / 52

NFAs and Regular Language

Theorem
For every regular language L there is an NFA N such that L = L(N).

Proof strategy:

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r

Har-Peled (UIUC) CS374 46 Fall 2020 46 / 52

NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r
Base cases: ∅, {ε}, {a} for a ∈ Σ.

Har-Peled (UIUC) CS374 47 Fall 2020 47 / 52

NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r
Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 52

NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r
Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 52

NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r
Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 52

NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r
Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 52

NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r
Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 52

NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r
Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 52

NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r
Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 52

Example

(ε+0)(1+10)*

(ε+0) (1+10)*

ε

0
(1+10) *

Har-Peled (UIUC) CS374 49 Fall 2020 49 / 52

Example

ε

0
(1+10) *

ε

0 1
*10

ε

0
1

*1	 0

Har-Peled (UIUC) CS374 50 Fall 2020 50 / 52

Example
Final NFA simplified slightly to reduce states

ε

0
1

*1	 0

0 1

ε

0

ε 42

3

1

1 0

ε
Har-Peled (UIUC) CS374 51 Fall 2020 51 / 52

THE END
...

(for now)

Har-Peled (UIUC) CS374 52 Fall 2020 52 / 52

	NFA Introduction
	Formal definition of NFA
	Extending the transition function to strings

	Constructing NFAs
	Closure Properties of NFAs
	NFAs capture Regular Languages

