Regular Languages and Expressions

Lecture 2
Thursday, August 27, 2020
2.1

Regular Languages

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(9) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
(3) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n>0} L^{n}$ is regular

The •* operator name is Kleene star
(0) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(4) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular

The •* operator name is Kleene star.
(a) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(9) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The •* operator name is Kleene star.
(0) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(4) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(c) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The •* operator name is Kleene star.
(0) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(4) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(6) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The .* operator name is Kleene star.
(7) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(9) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The ${ }^{*}$ operator name is Kleene star.
(3) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

Have basic operations to build regular languages.
Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_{1}, L_{2}, \ldots, be regular languages over alphabet Σ. Then the language $\cup_{i=1}^{\infty} L_{i}$ is not necessarily regular.

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: \{aba\} or \{abbabbab\}. Why?

Lemma

Every finite language L is regular.
Examples: $L=\{a$, abaab, aba\}. $L=\{w| | w \mid \leq 100\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: \{aba\} or \{abbabbab\}. Why?

Lemma

Every finite language L is regular.
Examples: $L=\{a, a b a a b, a b a\} . L=\{w| | w \mid \leq 100\}$. Why?

More Examples

- $\{\boldsymbol{w} \mid \boldsymbol{w}$ is a keyword in Python program $\}$
- $\{w \mid w$ is a valid date of the form $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}\}$
- $\{\boldsymbol{w} \mid \boldsymbol{w}$ describes a valid Roman numeral $\}$ $\{I, I I, I I I, I V, V, V I, V I I, V I I I, I X, X, X I, \ldots\}$.
- $\{w \mid w$ contains "CS374" as a substring $\}$.

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
($L_{3}=\left\{0^{2 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?
(1) $L_{5}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is not divisible by 17$\} . L_{5}$ is regular. T/F?
(-) $L_{6}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , or 5$\} . L_{6}$ is regular. T / F ?
(1) $L_{7}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , and 5$\} . L_{7}$ is regular. T / F ?
($L_{8}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T / F ?

- $L_{9}=\left\{0^{i} 1^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\}$. L_{9} is regular. T / F ?
(1) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T/F?

THE END

(for now)

2.1.1

Regular Languages: Review questions

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T / F ?
(3) $L_{3}=\left\{0^{2 i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T / F ?
(($L_{4}=\left\{0^{17 i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T / F ?
(0) $L_{5}=\left\{0^{i} \mid i\right.$ is not divisible by 17$\} . L_{5}$ is regular. T / F ?
(6) $L_{6}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , or 5$\} . L_{6}$ is regular. T / F ?
(0) $L_{7}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , and 5$\} . L_{7}$ is regular. T / F ?
(8) $L_{8}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T / F ?
(9) $L_{9}=\left\{0^{i} 1^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{9}$ is regular. T / F ?
(10) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T / F ?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
($L_{3}=\left\{0^{2 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
$L_{4}=\left\{0^{17 i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T / F ?
$L_{5}=\left\{0^{i} \mid i\right.$ is not divisible by 17$\} . L_{5}$ is regular. T / F ?
$L_{6}=\left\{0^{i} \mid i\right.$ is divisible by 2,3, or 5$\} . L_{6}$ is regular. T / F ?
$L_{7}=\left\{0^{i} \mid i\right.$ is divisible by 2,3, and 5$\} . L_{7}$ is regular. T / F ?
$L_{8}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T / F ?
$L_{9}=\left\{0^{i} i^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{9}$ is regular. T / F ?
(1) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T / F ?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
($L_{3}=\left\{0^{2 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T / F ?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
($L_{3}=\left\{0^{2 i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?
(0) $L_{5}=\left\{0^{i} \mid i\right.$ is not divisible by 17$\} . L_{5}$ is regular. T/F?
(6) $L_{6}=\left\{0^{i} \mid i\right.$ is divisible by 2,3, or 5$\} . L_{6}$ is regular. T / F ?
$L_{7}=\left\{0^{i} \mid i\right.$ is divisible by 2,3, and 5$\} . L_{7}$ is regular. T / F ?
(8) $L_{8}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T / F ?
(9) $L_{9}=\left\{0^{i} 1^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{9}$ is regular. T / F ?
(1) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T / F ?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
(3) $L_{3}=\left\{0^{2 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?
(0) $L_{5}=\left\{0^{i} \mid i\right.$ is not divisible by 17$\} . L_{5}$ is regular. T/F?
(-) $L_{6}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , or 5$\} . L_{6}$ is regular. T/F ?
(1) $L_{7}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , and 5$\} . L_{7}$ is regular. T / F ?
(8) $L_{8}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T / F ?
(9) $L_{0}=\left\{0^{i} 1^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\}$. L_{0} is regular. T / F ?
(0) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T / F ?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
(0) $L_{3}=\left\{0^{2 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?
(0) $L_{5}=\left\{0^{i} \mid i\right.$ is not divisible by 17$\} . L_{5}$ is regular. T/F?
(-) $L_{6}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , or 5$\} . L_{6}$ is regular. T / F ?
(0. $L_{7}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , and 5$\} . L_{7}$ is regular. T / F ?
(8) $L_{8}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T / F ?
(0) $L_{9}=\left\{0^{i} 1^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{9}$ is regular. T / F ?
(10) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T / F ?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
($L_{3}=\left\{0^{2 i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?
(2) $L_{5}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is not divisible by 17$\}$. L_{5} is regular. T/F?
(-) $L_{6}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , or 5$\} . L_{6}$ is regular. T / F ?
(0) $L_{7}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , and 5$\} . L_{7}$ is regular. T / F ?
($L_{8}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\}$. L_{8} is regular. T/F?

- $L_{9}=\left\{0^{i} 1^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\}$. L_{9} is regular. T / F ?
(1) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T/F?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
($L_{3}=\left\{0^{2 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?
(0) $L_{5}=\left\{0^{i} \mid i\right.$ is not divisible by 17$\} . L_{5}$ is regular. T/F?
(0) $L_{6}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , or 5$\}$. L_{6} is regular. T / F ?
(0) $L_{7}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , and 5$\} . L_{7}$ is regular. T / F ?
($L_{8}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\}$. L_{8} is regular. T/F?

- $L_{9}=\left\{0^{i} 1^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\} . L_{9}$ is regular. T / F ?
(0) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most $\left.3741 s\right\} . L_{10}$ is regular. T / F ?

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
($L_{3}=\left\{0^{2 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?
(0) $L_{5}=\left\{0^{i} \mid i\right.$ is not divisible by 17$\} . L_{5}$ is regular. T/F?
(1) $L_{6}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , or 5$\} . L_{6}$ is regular. T / F ?
(1) $L_{7}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , and 5$\} . L_{7}$ is regular. T / F ?
($L_{8}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T/F?
(-) $L_{9}=\left\{0^{i} 1^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\} . L_{9}$ is regular. T/F?
(1) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T/F?

THE END

(for now)

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
- text search (editors, Unix/grep, emacs)
- compilers: lexical analysis
- compact way to represent interesting/useful languages
- dates back to 50's: Stephen Kleene who has a star names after him.

Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_{1} and r_{2} are regular expressions denoting languages R_{1} and \boldsymbol{R}_{2}

respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} \bullet r_{2}\right)=r_{1} \bullet r_{2}=\left(r_{1} r_{2}\right)$ denotes the language $\boldsymbol{R}_{1} \boldsymbol{R}_{2}$
- $\left(r_{1}\right)^{*}$ denotes the language R_{1}^{*}

Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_{1} and r_{2} are regular expressions denoting languages \boldsymbol{R}_{1} and \boldsymbol{R}_{2} respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} \bullet r_{2}\right)=r_{1} \bullet r_{2}=\left(r_{1} r_{2}\right)$ denotes the language $\boldsymbol{R}_{1} \boldsymbol{R}_{2}$
- $\left(r_{1}\right)^{*}$ denotes the language R_{1}^{*}

Regular Languages vs Regular Expressions

Regular Languages

\emptyset regular
$\{\epsilon\}$ regular
$\{a\}$ regular for $a \in \Sigma$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are
R^{*} is regular if R is

Regular Expressions

```
\emptyset denotes \emptyset
\epsilon denotes {\epsilon}
a denote {a}
r
r
r* denote R*
```

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$
- Omit parenthesis by adopting precedence order: *, concatenate

Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$

- Omit parenthesis by associativity of each of these operations Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: *, concatenate,

Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$

- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} \boldsymbol{s}+\boldsymbol{t}=\left(\left(r^{*}\right) \boldsymbol{s}\right)+\boldsymbol{t}$
- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} \boldsymbol{s}+\boldsymbol{t}=\left(\left(r^{*}\right) \boldsymbol{s}\right)+\boldsymbol{t}$
- Omit parenthesis by associativity of each of these operations.

Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.

- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then
$L\left(r^{+}\right)=R^{+}$
- Other notation $r+s, r \cup s, r \mid s$ all denote union. rs is sometimes written as $r \circ s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $\mathrm{r}^{+}=\mathrm{rr}^{*}$. Hence if $L(r)=R$ then $L\left(r^{+}\right)=R^{+}$.
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then $L\left(r^{+}\right)=R^{+}$.
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" $L(r)$ (say by giving an English description)

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" $L(r)$ (say by giving an English description)

THE END

(for now)

2.2.1

Some examples of regular expressions

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1s. Alternatively, no two consecutive $0 s$ and no two consecutive 1s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s. Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- D0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0:
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1s. Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive Os.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0:
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1s. Alternatively, no two consecutive 0 s and no two consecutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0:
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1s. Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: $\}$
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1 s. Alternatively, no two consecutive 0 s and no two consecutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\boldsymbol{\epsilon}+1)(01)^{*}(\boldsymbol{\epsilon}+0)$: alternating 0 s and 1 s. Alternatively, no two consecutive 0 s and no two consecutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1s. Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1s. Alternatively, no two consecutive 0 s and no two consecutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: $\}$
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alternating 0 s and 1s. Alternatively, no two consecutive 0 s and no two consecutive 1s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0s.

Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's
one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1's
one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 05 .

Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's
one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's
one answer:
- bitstrings with an odd number of 1's one answer: $0^{*} 1 r$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1's
one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s.

Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's

one answer: 0*1r where r is solution to previous part

- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of Os.

Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's one answer: $0^{*} 1 r$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s.

Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's one answer: $0^{*} 1 r$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0s.

Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's one answer: $0^{*} 1 r$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Bit strings with odd number of 0s and 1s

The regular expression is

$$
\begin{aligned}
& (00+11)^{*}(01+10) \\
& \quad\left(00+11+(01+10)(00+11)^{*}(01+10)\right)^{*}
\end{aligned}
$$

(Solved using techniques to be presented in the following lectures...)

Regular expression identities

- $r^{*} r^{*}=r^{*}$ meaning for any regular expression $r, L\left(r^{*} r^{*}\right)=L\left(r^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Regular expression identities

- $r^{*} \boldsymbol{r}^{*}=\boldsymbol{r}^{*}$ meaning for any regular expression $\boldsymbol{r}, \boldsymbol{L}\left(\boldsymbol{r}^{*} \boldsymbol{r}^{*}\right)=\boldsymbol{L}\left(\boldsymbol{r}^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Regular expression identities

- $r^{*} \boldsymbol{r}^{*}=r^{*}$ meaning for any regular expression $r, L\left(r^{*} r^{*}\right)=L\left(r^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive

Regular expression identities

- $r^{*} r^{*}=r^{*}$ meaning for any regular expression $r, L\left(r^{*} r^{*}\right)=\boldsymbol{L}\left(r^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive rules.

THE END

(for now)

2.2.2

An example of a non-regular language

A non-regular language and other closure properties
Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

Theorem

```
L={0n1n}|n\geq0}={\epsilon,01,0011,000111,\ldots
The language L is not a regular language
```


How do we prove it?

Other questions

- Sunnose R_{1} is regular and R_{2} is regular. Is $R_{1} \cap R_{2}$ regular?
- Suppose R_{1} is regular is $\overline{R_{1}}$ (complement of R_{1}) regular?

A non-regular language and other closure properties
Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

Theorem

$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.
The language L is not a regular language.
How do we prove it?

Other questions:

- Suppose R_{1} is regular and R_{2} is regular. Is $R_{1} \cap R_{2}$ regular?
- Suppose R_{1} is regular is $\overline{R_{1}}$ (complement of R_{1}) regular?

A non-regular language and other closure properties

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

Theorem

$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.
The language L is not a regular language.
How do we prove it?

Other questions

- Supnose R_{1} is regular and R_{2} is regular. Is $R_{1} \cap R_{2}$ regular?
- Suppose R_{1} is regular is $\overline{R_{1}}$ (complement of R_{1}) regular?

A non-regular language and other closure properties

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

Theorem

$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.
The language L is not a regular language.
How do we prove it?
Other questions:

- Suppose R_{1} is regular and R_{2} is regular. Is $R_{1} \cap R_{2}$ regular?
- Suppose R_{1} is regular is $\overline{R_{1}}$ (complement of R_{1}) regular?

A sketchy proof

Theorem
 $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.
 The language L is not a regular language.

