Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

24.4.2

The consistency of execution

The variables of φ

Variables:

$\left\langle\boldsymbol{q}_{\boldsymbol{j}}, \boldsymbol{b}_{j}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M} $\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}. $\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}. $\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

φ_{1} : The input is encoded correctly

φ_{1} asserts (is true eff) the variables are set T / F indicating that \boldsymbol{M} starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks. Let $\boldsymbol{x}=x_{1} x_{2} \ldots x_{n}$

$$
\begin{aligned}
& \varphi_{1}=\boldsymbol{S}\left(\boldsymbol{q}_{\mathbf{0}}, \mathbf{0}\right) \quad / / \text { state at time } \mathbf{0} \text { is } \boldsymbol{q}_{\mathbf{0}} \\
& \bigwedge_{h=1} \boldsymbol{T}\left(x_{h}, \boldsymbol{h}, \mathbf{0}\right) \quad / / \text { at time } \mathbf{0} \text { cells } \mathbf{1} \text { to } \boldsymbol{n} \text { have value } x_{1} \text { to } x_{n} \\
& \wedge \bigwedge_{h=n+1}^{p(n)} T(\sqcup, h, 0) \\
& \text { // all remaining cells are blank } \\
& \wedge \boldsymbol{H}(\mathbf{1}, \mathbf{0}) \quad / / \text { The head is at time } \mathbf{0} \text { at start of tape }
\end{aligned}
$$

$\varphi_{2}: M$ is in exactly one state at any point in time

φ_{2} asserts M in exactly one state at any time \boldsymbol{i} :

$$
\varphi_{2}=\bigwedge_{i=0}^{p(|x|)}\left(\oplus\left(S\left(q_{0}, i\right), S\left(q_{1}, i\right), \ldots, S\left(q_{|Q|}, i\right)\right)\right)
$$

Variables:

$\left\langle\boldsymbol{a}_{j}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{j}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: j$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

$\varphi_{3}:$ Each tape cell holds a unique symbol at any time

φ_{3} asserts that each tape cell holds a unique symbol at any given time.

$$
\varphi_{3}=\bigwedge_{i=0}^{p(|x| \mid)} \bigwedge_{h=1}^{p(|x|)} \oplus\left(T\left(b_{1}, \boldsymbol{h}, \boldsymbol{i}\right), T\left(\boldsymbol{b}_{2}, \boldsymbol{h}, \boldsymbol{i}\right), \ldots, T\left(\boldsymbol{b}_{|\Gamma|}, \boldsymbol{h}, \boldsymbol{i}\right)\right)
$$

For each time \boldsymbol{i} and for each cell position \boldsymbol{h} exactly one symbol $\boldsymbol{b} \in \Gamma$ at cell position \boldsymbol{h} at time \boldsymbol{i}

Variables:

$\left\langle\boldsymbol{q}_{\boldsymbol{j}}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

φ_{4} : tape head of \boldsymbol{M} is in exactly one position at any time \boldsymbol{i}

 φ_{4} asserts that the read/write head of \boldsymbol{M} is in exactly one position at any time $\boldsymbol{i}$$$
\varphi_{4}=\bigwedge_{i=0}^{p(|x|)}(\oplus(\boldsymbol{H}(\mathbf{1}, \boldsymbol{i}), \boldsymbol{H}(2, \boldsymbol{i}), \ldots, \boldsymbol{H}(\boldsymbol{p}(|x|), \boldsymbol{i})))
$$

Variables:

$\left\langle\boldsymbol{q}_{j}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

$\varphi_{5}: M$ accepts the input

φ_{5} asserts that M accepts

- Let \boldsymbol{q}_{a} be unique accept state of \boldsymbol{M}
- without loss of generality assume \boldsymbol{M} runs all $\boldsymbol{p}(|\boldsymbol{x}|)$ steps

$$
\varphi_{5}=\boldsymbol{S}\left(\boldsymbol{q}_{a}, \boldsymbol{p}(|\boldsymbol{x}|)\right)
$$

State at time $\boldsymbol{p}(|\boldsymbol{x}|)$ is $\boldsymbol{q}_{\boldsymbol{a}}$ the accept state.
If we don't want to make assumption of running for all steps

$$
\varphi_{5}=\bigvee_{i=1}^{p(|x|)} S\left(q_{a}, i\right)
$$

which means M enters accepts state at some time.

$\varphi_{6}: M$ executes a unique instruction at each time

φ_{6} asserts that M executes a unique instruction at each time

$$
\varphi_{6}=\bigwedge_{i=0}^{p(|x|)} \oplus(I(1, i), I(2, i), \ldots, I(m, i))
$$

where \boldsymbol{m} is max instruction number.

Variables:

$\left\langle\boldsymbol{q}_{\boldsymbol{j}}, \boldsymbol{b}_{j}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

φ_{7} : Tape changes only because of the head writing something

φ_{7} ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.
"If head is not at position \boldsymbol{h} at time \boldsymbol{i} then at time $\boldsymbol{i}+\mathbf{1}$ the symbol at cell \boldsymbol{h} must be unchanged"

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(\overline{H(h, i)} \Rightarrow \overline{T(b, h, i) \bigwedge T(c, h, i+1)})
$$

since $\boldsymbol{A} \Rightarrow \boldsymbol{B}$ is same as $\neg \boldsymbol{A} \vee \boldsymbol{B}$, rewrite above in CNF form

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(H(h, i) \vee \neg T(b, h, i) \vee \neg T(c, h, i+1))
$$

$\varphi_{8}:$ Transitions are done from correct states

\boldsymbol{j} th instruction of $\boldsymbol{M}:<\boldsymbol{q}_{j}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}>$

$$
\varphi_{8}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow S\left(q_{j}, i\right)\right)
$$

If instruction \boldsymbol{j} is executed at time \boldsymbol{i} then state at time \boldsymbol{i} must be $\boldsymbol{q}_{\boldsymbol{j}}$.

Variables:

$\left\langle\boldsymbol{q}_{j}, \boldsymbol{b}_{j}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{j}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

$\varphi_{9}:$ Transitions are done into correct state

j th instruction of $\boldsymbol{M}:<\boldsymbol{q}_{j}, \boldsymbol{b}_{j}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{j}^{\prime}, \boldsymbol{d}_{j}>$

$$
\varphi_{9}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow S\left(q_{j}^{\prime}, i+1\right)\right)
$$

If instruction \boldsymbol{j} was performed at time \boldsymbol{i}, then state at time $\boldsymbol{i}+\mathbf{1}$ must be $\boldsymbol{q}_{\boldsymbol{j}}^{\prime}$.

Variables:

$\left\langle\boldsymbol{q}_{j}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{a}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{j}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

$\varphi_{10}:$ The character written on tape that triggered an

 instruction, is the correct one$$
\varphi_{10}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{j}\left[(I(j, i) \bigwedge H(h, i)) \Rightarrow T\left(\boldsymbol{b}_{j}, \boldsymbol{h}, \boldsymbol{i}\right)\right]
$$

If instruction \boldsymbol{j} was executed at time \boldsymbol{i} and head was at position \boldsymbol{h}, then cell \boldsymbol{h} has the symbol needed to issue instruction \boldsymbol{j} is written under the head location on the tape.

Variables:

$\left\langle\boldsymbol{q}_{j}, \boldsymbol{b}_{j}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{j}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

φ_{11} : The correct symbol was written to the tape at time \boldsymbol{i}

$$
\varphi_{11}=\bigwedge_{i} \bigwedge_{j} \bigwedge_{h}\left[(I(j, i) \wedge H(h, i)) \Rightarrow T\left(b_{j}^{\prime}, h, i+1\right)\right]
$$

If instruction \boldsymbol{j} was executed time \boldsymbol{i} with head at \boldsymbol{h}, then at next time step symbol $\boldsymbol{b}_{\boldsymbol{j}}^{\prime}$ was written in position \boldsymbol{h}

Variables:

$\left\langle\boldsymbol{q}_{j}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

$\varphi_{12}:$ Head was moved in the right direction at time \boldsymbol{i}

$$
\varphi_{12}=\bigwedge_{i} \bigwedge_{j} \bigwedge_{h}\left[(I(\boldsymbol{j}, \boldsymbol{i}) \wedge \boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})) \Rightarrow \boldsymbol{H}\left(\boldsymbol{h}+\boldsymbol{d}_{j}, \boldsymbol{i}+\mathbf{1}\right)\right]
$$

The head is moved properly according to instr \boldsymbol{j}.

Variables:

$\left\langle\boldsymbol{q}_{\boldsymbol{j}}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{j}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right\rangle: \boldsymbol{j}$ th instruction of \boldsymbol{M}
$\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$: Instruction \boldsymbol{j} was issued at time \boldsymbol{i}.
$\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})$: The head is at location \boldsymbol{h} at time \boldsymbol{i}.
$\boldsymbol{T}(\boldsymbol{c}, \boldsymbol{h}, \boldsymbol{i})$: The tape at location \boldsymbol{h} at time \boldsymbol{i} stored the character \boldsymbol{c}.

THE END

(for now)

