Algorithms \& Models of Computation CS/ECE 374, Fall 2020

24.3.3.2

The clause gadget

3 color this gadget.

Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.
(B) No.

3 color this gadget II

Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.
(B) No.

Clause Satisfiability Gadget

1. For each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph

- gadget graph connects to nodes corresponding to $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$
- needs to implement OR

Clause Satisfiability Gadget

1. For each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph

- gadget graph connects to nodes corresponding to $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$
- needs to implement OR

2. OR-gadget-graph:

OR-Gadget Graph

Property: if $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, add OR-gadget graph with input nodes $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and connect output node of gadget to both False and Base

Reduction

Claim 24.1.

No legal 3-coloring of above graph (with coloring of nodes $\boldsymbol{T}, \boldsymbol{F}, \boldsymbol{B}$ fixed) in which $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored False. If any of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored True then there is a legal 3-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example 24.2.
$\varphi=(u \vee \neg \boldsymbol{v} \vee \boldsymbol{w}) \wedge(v \vee x \vee \neg \boldsymbol{y})$

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3-colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
\Rightarrow for each clause $C_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3-colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3-colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3-colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.
\boldsymbol{G}_{φ} is 3 -colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment
 Base and False!

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3-colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.
\boldsymbol{G}_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment
- consider any clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$. it cannot be that all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are False. If so, output of OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR

$(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c}) \wedge(\boldsymbol{b} \vee \overline{\boldsymbol{c}} \vee \overline{\boldsymbol{d}}) \wedge(\overline{\boldsymbol{a}} \vee \boldsymbol{c} \vee \boldsymbol{d}) \wedge(\boldsymbol{a} \vee \overline{\boldsymbol{b}} \vee \overline{\mathbf{d}})$

Graph generated in reduction...

... from 3SAT to 3COLOR

$$
(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c}) \wedge(\boldsymbol{b} \vee \overline{\boldsymbol{c}} \vee \overline{\boldsymbol{d}}) \wedge(\overline{\boldsymbol{a}} \vee \boldsymbol{c} \vee \boldsymbol{d}) \wedge(\boldsymbol{a} \vee \overline{\boldsymbol{b}} \vee \overline{\boldsymbol{d}})
$$

Graph generated in reduction...

... from 3SAT to 3COLOR

$$
(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c}) \wedge(\boldsymbol{b} \vee \overline{\boldsymbol{c}} \vee \overline{\boldsymbol{d}}) \wedge(\overline{\boldsymbol{a}} \vee \boldsymbol{c} \vee \boldsymbol{d}) \wedge(\boldsymbol{a} \vee \overline{\boldsymbol{b}} \vee \overline{\boldsymbol{d}})
$$

Graph generated in reduction...

... from 3SAT to 3COLOR

$$
(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c}) \wedge(\boldsymbol{b} \vee \bar{c} \vee \overline{\boldsymbol{d}}) \wedge(\overline{\boldsymbol{a}} \vee \boldsymbol{c} \vee \boldsymbol{d}) \wedge(\boldsymbol{a} \vee \overline{\boldsymbol{b}} \vee \overline{\boldsymbol{d}})
$$

Graph generated in reduction...

... from 3SAT to 3COLOR

$$
(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c}) \wedge(\boldsymbol{b} \vee \overline{\boldsymbol{c}} \vee \overline{\boldsymbol{d}}) \wedge(\overline{\boldsymbol{a}} \vee \boldsymbol{c} \vee \boldsymbol{d}) \wedge(\boldsymbol{a} \vee \overline{\boldsymbol{b}} \vee \overline{\boldsymbol{d}})
$$

Graph generated in reduction...

... from 3SAT to 3COLOR

$(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c}) \wedge(\boldsymbol{b} \vee \overline{\boldsymbol{c}} \vee \overline{\boldsymbol{d}}) \wedge(\overline{\boldsymbol{a}} \vee \boldsymbol{c} \vee \boldsymbol{d}) \wedge(\boldsymbol{a} \vee \overline{\boldsymbol{b}} \vee \overline{\mathbf{d}})$

THE END

(for now)

