Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

24.2

Circuit SAT

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

24.2.1

The circuit satisfiability (CSAT) problem

Circuits

Definition 24.1.

A circuit is a directed acyclic graph with

1. Input vertices (without incoming edges) labelled with $\mathbf{0}, \mathbf{1}$ or a distinct variable.
2. Every other vertex is labelled \vee, \wedge or ᄀ.
3. Single node output vertex with no outgoing edges.
[^0]
Circuits

Definition 24.1.

A circuit is a directed acyclic graph with

1. Input vertices (without incoming edges) labelled with $\mathbf{0}, \mathbf{1}$ or a distinct variable.
2. Every other vertex is labelled \vee, \wedge or \neg.
3. Single node output vertex with no outgoing edges.

Can safely assume every node has at most two incoming edges.

CSAT: Circuit Satisfaction

Definition 24.2 (Circuit Satisfaction (CSAT).).

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1}$?

CSAT: Circuit Satisfaction

Definition 24.2 (Circuit Satisfaction (CSAT).).

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1 ?}$

Claim 24.3.

CSAT is in NP.

1. Certificate: Assignment to input variables.
2. Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Converting a CNF formula into a Circuit

 $3 S A T \leq_{p}$ CSATGiven 3CNF formula $\boldsymbol{\varphi}$ with \boldsymbol{n} variables and \boldsymbol{m} clauses, create a Circuit \boldsymbol{C}.

- Inputs to C are the \boldsymbol{n} boolean variables $x_{1}, x_{2}, \ldots, x_{n}$
- Use NOT gate to generate literal $\neg \boldsymbol{x}_{\boldsymbol{i}}$ for each variable $\boldsymbol{x}_{\boldsymbol{i}}$
- For each clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

Example

3SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example

$3 S A T \leq_{p}$ CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example

$3 S A T \leq_{p}$ CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example

$3 S A T \leq_{p}$ CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example

$3 S A T \leq_{p}$ CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example

$3 S A T \leq_{p}$ CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example

$3 S A T \leq_{p}$ CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example

$3 S A T \leq_{p}$ CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

3 SAT \leq_{p} CSAT

Lemma 24.4.
$S A T \leq_{p} 3 S A T \leq_{p} C S A T$.

THE END

(for now)

[^0]: Can safely assume every node has at most two incoming edges

