Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
23.4

Hamiltonian cycle in undirected graph

Hamiltonian Cycle

Problem 23.1.

Input Given undirected graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem 23.2.
Hamiltonian cycle problem for undirected graphs is NP-Complete.
Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Reduction Sketch

Goal: Given directed graph \boldsymbol{G}, need to construct undirected graph \boldsymbol{G}^{\prime} such that \boldsymbol{G} has Hamiltonian Path iff \boldsymbol{G}^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \mathbf{v} by 3 vertices: $\boldsymbol{v}_{\text {in }}, \mathbf{v}$, and $\mathbf{v}_{\text {out }}$

Reduction Sketch

Goal: Given directed graph \boldsymbol{G}, need to construct undirected graph \boldsymbol{G}^{\prime} such that \boldsymbol{G} has Hamiltonian Path iff \boldsymbol{G}^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$

Reduction Sketch

Goal: Given directed graph \boldsymbol{G}, need to construct undirected graph \boldsymbol{G}^{\prime} such that \boldsymbol{G} has Hamiltonian Path iff \boldsymbol{G}^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$
- A directed edge $(\boldsymbol{a}, \boldsymbol{b})$ is replaced by edge $\left(\boldsymbol{a}_{\text {out }}, \boldsymbol{b}_{\text {in }}\right)$

Reduction Sketch

Goal: Given directed graph \boldsymbol{G}, need to construct undirected graph \boldsymbol{G}^{\prime} such that \boldsymbol{G} has Hamiltonian Path iff \boldsymbol{G}^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\text {in }}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$
- A directed edge $\left(\boldsymbol{a}, \boldsymbol{b}^{\prime}\right)$ is replaced by edge $\left(\boldsymbol{a}_{\text {out }}, \boldsymbol{b}_{\text {in }}\right)$

Hamiltonian cycle reduction
Undirected to directed case

Hamiltonian cycle reduction

Undirected to directed case

Hamiltonian cycle reduction

Hamiltonian cycle reduction
Undirected to directed case

Reduction: Wrap-up

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

THE END

(for now)

